skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solid oxide MEMS-based fuel cells

Abstract

A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

Inventors:
;
Publication Date:
Research Org.:
The Regents of the University of California, Oakland, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1176142
Patent Number(s):
7,189,471
Application Number:
10/637,914
Assignee:
The Regents of the University of California (Oakland, CA) OSTI
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Jankowksi, Alan F., and Morse, Jeffrey D. Solid oxide MEMS-based fuel cells. United States: N. p., 2007. Web.
Jankowksi, Alan F., & Morse, Jeffrey D. Solid oxide MEMS-based fuel cells. United States.
Jankowksi, Alan F., and Morse, Jeffrey D. Tue . "Solid oxide MEMS-based fuel cells". United States. doi:. https://www.osti.gov/servlets/purl/1176142.
@article{osti_1176142,
title = {Solid oxide MEMS-based fuel cells},
author = {Jankowksi, Alan F. and Morse, Jeffrey D.},
abstractNote = {A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 13 00:00:00 EDT 2007},
month = {Tue Mar 13 00:00:00 EDT 2007}
}

Patent:

Save / Share: