skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure of adenovirus bound to cellular receptor car

Abstract

Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

Inventors:
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1176056
Patent Number(s):
7,157,266
Application Number:
10/218,419
Assignee:
Brookhaven Science Associates LLC (Upton, NY) BNL
DOE Contract Number:
AC02-98CH10886
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES

Citation Formats

Freimuth, Paul I. Structure of adenovirus bound to cellular receptor car. United States: N. p., 2007. Web.
Freimuth, Paul I. Structure of adenovirus bound to cellular receptor car. United States.
Freimuth, Paul I. Tue . "Structure of adenovirus bound to cellular receptor car". United States. doi:. https://www.osti.gov/servlets/purl/1176056.
@article{osti_1176056,
title = {Structure of adenovirus bound to cellular receptor car},
author = {Freimuth, Paul I.},
abstractNote = {Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 02 00:00:00 EST 2007},
month = {Tue Jan 02 00:00:00 EST 2007}
}

Patent:

Save / Share:
  • Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method,more » residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.« less
  • The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treatingmore » a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.« less
  • The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5more » (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).« less
  • No abstract prepared.
  • Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on humanmore » skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.« less