skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Composite, ordered material having sharp surface features

Abstract

A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

Inventors:
;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1176034
Patent Number(s):
7,150,904
Application Number:
10/900,248
Assignee:
UT-Battelle, LLC (Oak Ridge, TN) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

D'Urso, Brian R., and Simpson, John T. Composite, ordered material having sharp surface features. United States: N. p., 2006. Web.
D'Urso, Brian R., & Simpson, John T. Composite, ordered material having sharp surface features. United States.
D'Urso, Brian R., and Simpson, John T. Tue . "Composite, ordered material having sharp surface features". United States. doi:. https://www.osti.gov/servlets/purl/1176034.
@article{osti_1176034,
title = {Composite, ordered material having sharp surface features},
author = {D'Urso, Brian R. and Simpson, John T.},
abstractNote = {A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 19 00:00:00 EST 2006},
month = {Tue Dec 19 00:00:00 EST 2006}
}

Patent:

Save / Share:
  • A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element andmore » a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.« less
  • A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeablemore » material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.« less
  • A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeablemore » material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.« less
  • A composite material having improved bond strength and a substantially smooth external surface comprises a deoxidized copper alloy core material and a copper-aluminum-silicon clad material. The composite is formed by rolling together the core and clad, preferably in an unheated condition, in a single pass with a reduction of about 50% to 75% to form a metallurgical bond between the core and clad and thereafter enhancing the bond strength by heating the bonded core and cladding to a temperature in the range of about 200/sup 0/ C. to about 750/sup 0/ C. for a time period of about 5 minutesmore » to about 24 hours.« less