skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compact catadioptric imaging spectrometer utilizing reflective grating

Abstract

An imaging spectrometer apparatus comprising an entrance slit for directing light, a light means for receiving the light and directing the light, a grating that receives the light from the light means and defracts the light back onto the light means which focuses the light, and a detector that receives the focused light. In one embodiment the light means is a rotationally symmetric ZNSE aspheric lens. In another embodiment the light means comprises two ZNSE aspheric lenses that are coaxial. In another embodiment the light means comprises an aspheric mirror and a ZNSE aspheric lens.

Inventors:
Publication Date:
Research Org.:
The Regents of the University of California, Oakland, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1175595
Patent Number(s):
6,980,295
Application Number:
10/680,788
Assignee:
The Regents of the University of California (Oakland, CA) OSTI
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Lerner, Scott A. Compact catadioptric imaging spectrometer utilizing reflective grating. United States: N. p., 2005. Web.
Lerner, Scott A. Compact catadioptric imaging spectrometer utilizing reflective grating. United States.
Lerner, Scott A. Tue . "Compact catadioptric imaging spectrometer utilizing reflective grating". United States. doi:. https://www.osti.gov/servlets/purl/1175595.
@article{osti_1175595,
title = {Compact catadioptric imaging spectrometer utilizing reflective grating},
author = {Lerner, Scott A.},
abstractNote = {An imaging spectrometer apparatus comprising an entrance slit for directing light, a light means for receiving the light and directing the light, a grating that receives the light from the light means and defracts the light back onto the light means which focuses the light, and a detector that receives the focused light. In one embodiment the light means is a rotationally symmetric ZNSE aspheric lens. In another embodiment the light means comprises two ZNSE aspheric lenses that are coaxial. In another embodiment the light means comprises an aspheric mirror and a ZNSE aspheric lens.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 27 00:00:00 EST 2005},
month = {Tue Dec 27 00:00:00 EST 2005}
}

Patent:

Save / Share:
  • A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.
  • A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. Themore » light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.« less
  • An imaging spectrometer comprising an entrance slit for directing light, a lens that receives said light and reflects said light, a grating that defracts said light back onto said lens which focuses said light, and a detector array that receives said focused light. In one embodiment the grating has rulings immersed into a germanium surface.
  • A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.
  • A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infraredmore » with the shorter wavelength region.« less