skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compact microchannel system

Abstract

The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

Inventors:
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1174510
Patent Number(s):
6,627,076
Application Number:
10/039,938
Assignee:
Sandia National Laboratories (Livermore, CA) SNL-L
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Griffiths, Stewart. Compact microchannel system. United States: N. p., 2003. Web.
Griffiths, Stewart. Compact microchannel system. United States.
Griffiths, Stewart. Tue . "Compact microchannel system". United States. doi:. https://www.osti.gov/servlets/purl/1174510.
@article{osti_1174510,
title = {Compact microchannel system},
author = {Griffiths, Stewart},
abstractNote = {The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Sep 30 00:00:00 EDT 2003},
month = {Tue Sep 30 00:00:00 EDT 2003}
}

Patent:

Save / Share:
  • A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used tomore » uniformly couple the top plate with the bottom microchannel plate. 4 figs.« less
  • A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couplemore » the top plate with the bottom microchannel plate.« less
  • A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam tomore » a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.« less
  • The present invention improves the performance of microchannel systems for chemical and biological synthesis and analysis by providing a method and apparatus for producing a thin band of a species sample. Thin sample bands improve the resolution of microchannel separation processes, as well as many other processes requiring precise control of sample size and volume. The new method comprises a series of steps in which a species sample is manipulated by controlled transport through a junction formed at the intersection of four or more channels. A sample is first inserted into the end of one of these channels in themore » vicinity of the junction. Next, this sample is thinned by transport across the junction one or more times. During these thinning steps, flow enters the junction through one of the channels and exists through those remaining, providing a divergent flow field that progressively stretches and thins the band with each traverse of the junction. The thickness of the resulting sample band may be smaller than the channel width. Moreover, the thickness of the band may be varied and controlled by altering the method alone, without modification to the channel or junction geometries. The invention is applicable to both electroosmotic and electrophoretic transport, to combined electrokinetic transport, and to some special cases in which bulk fluid transport is driven by pressure gradients. It is further applicable to channels that are open, filled with a gel or filled with a porous or granular material.« less
  • A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of themore » multiplicity of sensors, so that the thermal runaway event is rapidly quenched.« less