skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalyst Design with Atomic Layer Deposition

Abstract

Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriad catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.

Authors:
; ; ; ;  [1]; ; ; ; ;
  1. Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1172068
Alternate Identifier(s):
OSTI ID: 1239587
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Published Article
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Name: ACS Catalysis Journal Volume: 5 Journal Issue: 3; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; atomic layer deposition; ALD; catalyst overcoating; metal nanoparticles; bimetallic nanoparticles; controlled synthesis; catalyst design; mechanism elucidation

Citation Formats

O’Neill, Brandon J., Jackson, David H. K., Lee, Jechan, Canlas, Christian, Stair, Peter C., Marshall, Christopher L., Elam, Jeffrey W., Kuech, Thomas F., Dumesic, James A., and Huber, George W. Catalyst Design with Atomic Layer Deposition. United States: N. p., 2015. Web. doi:10.1021/cs501862h.
O’Neill, Brandon J., Jackson, David H. K., Lee, Jechan, Canlas, Christian, Stair, Peter C., Marshall, Christopher L., Elam, Jeffrey W., Kuech, Thomas F., Dumesic, James A., & Huber, George W. Catalyst Design with Atomic Layer Deposition. United States. doi:10.1021/cs501862h.
O’Neill, Brandon J., Jackson, David H. K., Lee, Jechan, Canlas, Christian, Stair, Peter C., Marshall, Christopher L., Elam, Jeffrey W., Kuech, Thomas F., Dumesic, James A., and Huber, George W. Fri . "Catalyst Design with Atomic Layer Deposition". United States. doi:10.1021/cs501862h.
@article{osti_1172068,
title = {Catalyst Design with Atomic Layer Deposition},
author = {O’Neill, Brandon J. and Jackson, David H. K. and Lee, Jechan and Canlas, Christian and Stair, Peter C. and Marshall, Christopher L. and Elam, Jeffrey W. and Kuech, Thomas F. and Dumesic, James A. and Huber, George W.},
abstractNote = {Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriad catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.},
doi = {10.1021/cs501862h},
journal = {ACS Catalysis},
issn = {2155-5435},
number = 3,
volume = 5,
place = {United States},
year = {2015},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1021/cs501862h

Citation Metrics:
Cited by: 118 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

The Role of Supported Atomically Distributed Metal Species in Electrochemistry and How to Create Them
journal, May 2019

  • Ding, Yuxiao; Schlögl, Robert; Heumann, Saskia
  • ChemElectroChem, Vol. 6, Issue 15
  • DOI: 10.1002/celc.201900598

Molecular Precursors for the Phase-Change Material Germanium-Antimony-Telluride, Ge 2 Sb 2 Te 5 (GST) : Molecular Precursors for the Phase-Change Material Germanium-Antimony-Telluride, Ge
journal, August 2017

  • Harmgarth, Nicole; Zörner, Florian; Liebing, Phil
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 643, Issue 18
  • DOI: 10.1002/zaac.201700211

Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition
journal, February 2019

  • Karimaghaloo, Alireza; Koo, Junmo; Kang, Hung-Sen
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 6, Issue 3
  • DOI: 10.1007/s40684-019-00090-9

Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes
journal, March 2019

  • Shim, Joon Hyung; Han, Gwon Deok; Choi, Hyung Jong
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 6, Issue 3
  • DOI: 10.1007/s40684-019-00092-7

Second-generation hexavalent molybdenum oxo-amidinate precursors for atomic layer deposition
journal, January 2017

  • Jurca, T.; Peters, A. W.; Mouat, A. R.
  • Dalton Transactions, Vol. 46, Issue 4
  • DOI: 10.1039/c6dt03952a

New Strategies for the Preparation of Sinter‐Resistant Metal‐Nanoparticle‐Based Catalysts
journal, July 2019

  • Wang, Lingxiang; Wang, Liang; Meng, Xiangju
  • Advanced Materials, Vol. 31, Issue 50
  • DOI: 10.1002/adma.201901905

Supported Noble‐Metal Single Atoms for Heterogeneous Catalysis
journal, July 2019

  • Li, Xuning; Yang, Xiaofeng; Huang, Yanqiang
  • Advanced Materials, Vol. 31, Issue 50
  • DOI: 10.1002/adma.201902031

Atomic layer deposited photocatalysts: comprehensive review on viable fabrication routes and reactor design approaches for photo-mediated redox reactions
journal, January 2019

  • Eswar, N. K. R.; Singh, Satyapaul A.; Heo, Jaeyeong
  • Journal of Materials Chemistry A, Vol. 7, Issue 30
  • DOI: 10.1039/c9ta04780h

New Strategies for the Preparation of Sinter‐Resistant Metal‐Nanoparticle‐Based Catalysts
journal, July 2019

  • Wang, Lingxiang; Wang, Liang; Meng, Xiangju
  • Advanced Materials, Vol. 31, Issue 50
  • DOI: 10.1002/adma.201901905

Supported Noble‐Metal Single Atoms for Heterogeneous Catalysis
journal, July 2019

  • Li, Xuning; Yang, Xiaofeng; Huang, Yanqiang
  • Advanced Materials, Vol. 31, Issue 50
  • DOI: 10.1002/adma.201902031

The Role of Supported Atomically Distributed Metal Species in Electrochemistry and How to Create Them
journal, May 2019

  • Ding, Yuxiao; Schlögl, Robert; Heumann, Saskia
  • ChemElectroChem, Vol. 6, Issue 15
  • DOI: 10.1002/celc.201900598

Molecular Precursors for the Phase-Change Material Germanium-Antimony-Telluride, Ge 2 Sb 2 Te 5 (GST) : Molecular Precursors for the Phase-Change Material Germanium-Antimony-Telluride, Ge
journal, August 2017

  • Harmgarth, Nicole; Zörner, Florian; Liebing, Phil
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 643, Issue 18
  • DOI: 10.1002/zaac.201700211

Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition
journal, February 2019

  • Karimaghaloo, Alireza; Koo, Junmo; Kang, Hung-Sen
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 6, Issue 3
  • DOI: 10.1007/s40684-019-00090-9

Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes
journal, March 2019

  • Shim, Joon Hyung; Han, Gwon Deok; Choi, Hyung Jong
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 6, Issue 3
  • DOI: 10.1007/s40684-019-00092-7

Second-generation hexavalent molybdenum oxo-amidinate precursors for atomic layer deposition
journal, January 2017

  • Jurca, T.; Peters, A. W.; Mouat, A. R.
  • Dalton Transactions, Vol. 46, Issue 4
  • DOI: 10.1039/c6dt03952a

Atomic layer deposited photocatalysts: comprehensive review on viable fabrication routes and reactor design approaches for photo-mediated redox reactions
journal, January 2019

  • Eswar, N. K. R.; Singh, Satyapaul A.; Heo, Jaeyeong
  • Journal of Materials Chemistry A, Vol. 7, Issue 30
  • DOI: 10.1039/c9ta04780h