skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analyzing Data Movements and Identifying Techniques for Next-generation High-bandwidth Networks

Technical Report ·
DOI:https://doi.org/10.2172/1171627· OSTI ID:1171627
 [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications’ perspective. We have investigated data transfer requirements of climate applications as a typical scientific example and evaluated how the scientific community can benefit from next generation high-bandwidth networks. We have experimented with current state-of-the-art data movement tools, and realized that there is no single solution for presetting transfer parameters for optimal use of the available bandwidth. Thus, we developed an adaptive transfer methodology for tuning and optimization in wide-area data transfers. This worked well with large files. However, typical scientific datasets may include many small files. Current filecentric data transfer protocols do not perform well with managing the transfer of small files, even when using parallel streams or concurrent transfers over high bandwidth networks. In order to overcome this problem, we develop a new block-based data movement method (in contrast to the current file-based methods) to improve data movement performance and efficiency in moving large scientific datasets that contain many small files. We implemented the new block-based data movement tool, which takes the approach of aggregating files into blocks and providing dynamic data channel management. In our work, we also realized that one of the major obstacles in use of high-bandwidth networks is the limitation in host system resources. 100Gbps is beyond the capacity of today’s commodity machine, since we need substantial amount of processing power and involvement of multiple cores to fill a 40Gbps or 100Gbps network. As a result, host system performance plays an important role in the use of highbandwidth networks. We have conducted a large number of experiments with our new block-based method and with current available file-based data movement tools. In this white paper, we describe future research problems and challenges for efficient use of next-generation science networks, based on the lessons learnt and the experiences gained with 100Gbps network applications.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1171627
Report Number(s):
LBNL-6177E
Country of Publication:
United States
Language:
English

Similar Records

Scaling the Earth System Grid to 100Gbps Networks
Technical Report · Fri Mar 02 00:00:00 EST 2012 · OSTI ID:1171627

Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN
Technical Report · Thu Dec 01 00:00:00 EST 2016 · OSTI ID:1171627

End-System Network Interface Controller for 100 Gb/s Wide Area Networks: Final Report
Technical Report · Fri Aug 30 00:00:00 EDT 2013 · OSTI ID:1171627