skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength

Abstract

Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that the residues from K24 to S28 may sit at a key region of structural flexibility and play a role in the protein’s function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05 M, 0.15 M, 0.2 M), the calcium concentration (0.07 mM and 0.4 mM), and the surface to which it is binding (HAP and carbonated apatite (CAP), a more direct mimic of enamel). A naturally occurring mutation found in amelogenin (T21I), was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions,more » with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a much tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that the protein is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24 to S28 region, a sensitivity that may contribute to function in biomineralization. This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the U.S. Department of Energy.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1171293
Report Number(s):
PNNL-SA-102903
400412000
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Frontiers in Physiology, 5:254
Country of Publication:
United States
Language:
English
Subject:
biomineralization; amelogenin; enamel; LRAP; solid state NMR

Citation Formats

Lu, Junxia, Burton, Sarah D., Xu, Yimin, Buchko, Garry W., and Shaw, Wendy J. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength. United States: N. p., 2014. Web. doi:10.3389/fphys.2014.00254.
Lu, Junxia, Burton, Sarah D., Xu, Yimin, Buchko, Garry W., & Shaw, Wendy J. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength. United States. doi:10.3389/fphys.2014.00254.
Lu, Junxia, Burton, Sarah D., Xu, Yimin, Buchko, Garry W., and Shaw, Wendy J. Fri . "The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength". United States. doi:10.3389/fphys.2014.00254.
@article{osti_1171293,
title = {The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength},
author = {Lu, Junxia and Burton, Sarah D. and Xu, Yimin and Buchko, Garry W. and Shaw, Wendy J.},
abstractNote = {Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that the residues from K24 to S28 may sit at a key region of structural flexibility and play a role in the protein’s function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05 M, 0.15 M, 0.2 M), the calcium concentration (0.07 mM and 0.4 mM), and the surface to which it is binding (HAP and carbonated apatite (CAP), a more direct mimic of enamel). A naturally occurring mutation found in amelogenin (T21I), was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a much tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that the protein is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24 to S28 region, a sensitivity that may contribute to function in biomineralization. This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the U.S. Department of Energy.},
doi = {10.3389/fphys.2014.00254},
journal = {Frontiers in Physiology, 5:254},
number = ,
volume = ,
place = {United States},
year = {Fri Jul 11 00:00:00 EDT 2014},
month = {Fri Jul 11 00:00:00 EDT 2014}
}
  • Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the 1H-15N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like themore » full-length protein, is intrinsically disordered under these solution conditions. The major difference between the 1H-15N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12* and Y12 at the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggest that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region and is likely due to a slow exchange process. As observed with rp(H)M180, residue specific changes in molecular dynamics, manifested by the reduction in intensity and disappearance of 1H-15N HSQC cross peaks, were observed with the addition of NaCl to rp(H)LRAP. These perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different pattern of 1H-15N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences account for the cell signaling properties attributable to LRAP but not the full-length protein.« less
  • Amelogenin and amelogenin splice variants are believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to it’s function. We have studied the adsorption of LRAP, a splice variant of amelogenin which may also contribute to enamel function, onto model self-assembled monolayers on gold containing of COOH, CH3, and NH2 end groups. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline (PBS) and solutions at saturation with calcium phosphate contained aggregates ofmore » nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and structures. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both calcium phosphate and PBS solutions. Adsorption was also promoted onto COOH surfaces when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies suggested that the protein adsorbed onto all surfaces as LRAP monomers. We propose that the monomers adsorb onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces, structures that may be important in the biomineralization of tooth enamel.« less
  • Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in promoting nucleation, controlling growth, and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, the quaternary structure of LRAP is not as well studied. Here, analytical ultracentrifugation sedimentation velocity (SV) and small angle neutron scatteringmore » (SANS) were used to study the tertiary and quaternary structure of LRAP over a range of pH values, ionic strengths, and concentrations. SV has advantages over other techniques in accurately quantifying protein speciation in polydisperse solutions. We found that the monomer was the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7 to 4.1, pH 4.5 to 8, 50 mmol/L( mM) to 200 mM NaCl, 0.065 to 2 mg/mL). The monomer was also the dominant species for unphosphorylated LRAP (LRAP(-P)) at pH 7.4 and LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregated in a narrow pH range near the isoelectric point (pH 4.1). We conclude that LRAP does not form nanospheres under physiological solution conditions. Both SV and SANS showed that the LRAP monomer has a radius of ~2.0 nm and adopts an extended structure which solution NMR studies show is intrinsically disordered. This work provides new insights into the tertiary and quaternary structure of LRAP and further evidence that the monomeric species is an important functional form of amelogenins« less
  • Cited by 6
  • The formation of biogenic materials requires the interaction of organic molecules with the mineral phase. In forming enamel, the amelogenin proteins contribute to the mineralization of hydroxyapatite (HAp). Leucine-rich amelogenin protein (LRAP) is a naturally occurring splice variant of amelogenin that comprises amelogenin’s predicted HAp binding domains. We determined the partial structure of phosphorylated and non-phosphorylated LRAP variants bound to HAp using combined solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. The ssNMR measurements indicate a largely extended structure for both variants, though some measurements are consistent with a partially helical N-terminal segment. Structure prediction was biased using 21 ssNMRmore » measurements at five HAp crystal faces. The predicted fold of LRAP is similar at all HAp faces studied, regardless of phosphorylation. LRAP’s predicted structure is relatively extended with a helix-turn-helix motif in the N-terminal domain and some helix in the C-terminal domain. The N-terminal domain of the phosphorylated variant binds HAp more tightly than the N-terminal domain of the non-phosphorylated variant. Both variants are predicted to preferentially bind the {010} HAp crystal face providing further evidence that amelogenins block crystal growth on the a and b faces to allow elongated crystals in the c-axis. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less