skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13)

; ;  [1]
  1. (NIH)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Institutes of Health (NIH)
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta Crystallogr. D; Journal Volume: 64; Journal Issue: (3) ; 03, 2008
Country of Publication:
United States

Citation Formats

Barinka, Cyril, Prahl, Adam, and Lubkowski, Jacek. Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13). United States: N. p., 2015. Web. doi:10.1107/S0907444907066164.
Barinka, Cyril, Prahl, Adam, & Lubkowski, Jacek. Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13). United States. doi:10.1107/S0907444907066164.
Barinka, Cyril, Prahl, Adam, and Lubkowski, Jacek. 2015. "Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13)". United States. doi:10.1107/S0907444907066164.
title = {Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13)},
author = {Barinka, Cyril and Prahl, Adam and Lubkowski, Jacek},
abstractNote = {},
doi = {10.1107/S0907444907066164},
journal = {Acta Crystallogr. D},
number = (3) ; 03, 2008,
volume = 64,
place = {United States},
year = 2015,
month = 2
  • Monocyte chemoattractant proteins (MCPs) belong to the CC chemokine family and are involved in many (patho)physiological processes characterized by mononuclear cell infiltration, including tissue remodeling, atherosclerosis and cancer metastasis. Here, the crystal structure of human monocyte chemoattractant protein 4 (MCP-4) refined at 1.70 {angstrom} resolution is reported with crystallographic values R = 0.180 and R{sub free} = 0.212. The overall MCP-4 fold reveals the typical tertiary features of the CC chemokine family. A central three-stranded antiparallel {beta}-sheet is C-terminally flanked by an overlaying {alpha}-helix, while the N-terminal part of the molecule forms an extended loop that is anchored to themore » rest of the molecule via two disulfide bridges, Cys11-Cys35 and Cys12-Cys51. The crystal packing suggests the existence of MCP-4 dimers with a dimerization interface similar to those previously reported for the X-ray structures of MCP-1 and MCP-2.« less
  • Chronic hypoxia has been reported to be associated with macrophage infiltration in progressive forms of kidney disease. Here, we investigated the regulatory effects of hypoxia on constitutive and TNF-{alpha}-stimulated expression of monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal renal tubular cells (HPTECs). Hypoxia reduced constitutive MCP-1 expression at the mRNA and protein levels in a time-dependent fashion for up to 48 h. Hypoxia also inhibited MCP-1 up-regulation by TNF-{alpha}. Treatment with actinomycin D showed that hypoxic down-regulation of MCP-1 expression resulted mainly from a decrease in the transcription but not the mRNA stability. Immunoblot and immunofluorescence analyses revealed thatmore » treatment with hypoxia or an iron chelator, desferrioxamine, induced nuclear accumulation of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in HPTECs. Desferrioxamine mimicked hypoxia in the reduction of MCP-1 expression. However, overexpression of a dominant negative form of HIF-1{alpha} did not abolish the hypoxia-induced reduction of MCP-1 expression in HPTECs. These results suggest that hypoxia is an important negative regulator of monocyte chemotaxis to the renal inflamed interstitium, by reducing MCP-1 expression partly via hypoxia-activated signals other than the HIF-1 pathway.« less
  • The infiltration of monocytes into the vascular wall and their transformation into lipid-laden foam cells characterize early atherogenesis. This focal accumulation of lipids, together with smooth muscle cell proliferation and migration, and the synthesis of extracellular matrix in the intima of large arteries result in the formation of an atherosclerotic plaque. The extent to which the plaque is infiltrated with monocytes appears to be an important determinant of plaque stability. It has been proposed that macrophages secrete an excess of matrix-degrading enzymes over their inhibitors, resulting in conversion of a stable plaque into anunstable plaque that is likely to rupture,more » resulting in acutemyocardial infarction. Macrophages and T cells constitute {approx}40 percent of the total population of cells in the lipid core region of atherosclerotic plaques. Their recruitment to the lesion may depend on alterations in the adhesive properties of the endothelial surface. Increased endothelial cell permeability and endothelial cell activation are among the earliest changes associated with developing lesions of atherosclerosis. Many of the cell adhesion molecules involved in monocyte recruitment are expressed at low or undetectable levels on normal endothelium but are substantially elevated on the endothelium overlaying atherosclerotic lesions In addition to endothelial cell activation, numerous chemotactic cytokines have also been postulated to be involved in monocyte recruitment. For example, interleukin (IL)-1 and tumor necrosis factor-a (TNF-a) are direct chemoattractants for human monocytes but additionally induce cytoskeletal changes in the endothelium that result in increased permeability. This increased permeability, together with stimulated expression of adhesion molecules such as E-selectin, plays an important part in the local inflammation mediated by TNF-a and IL-1. In addition, a large number of other proinflammatory cytokines, including macrophage inflammatory protein-1 a (MIP-1 a) and monocyte chemoattractant protein-1 (MCP-1), are direct chemoattractants for monocytes. Thus alteration in the expression of a wide variety of adhesion molecules and/or cytokines during atherogenesish as been proposed to affect monocyte recruitment and hence modulates both plaque development and stability.« less
  • Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TPmore » was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues.« less