skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

Abstract

Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

Inventors:
;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1171090
Patent Number(s):
8,962,325
Application Number:
12/242,474
Assignee:
The Regents of the University of California (Oakland, CA) CHO
DOE Contract Number:
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2008 Sep 30
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Stampfer, Martha R, and Garbe, James C. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures. United States: N. p., 2015. Web.
Stampfer, Martha R, & Garbe, James C. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures. United States.
Stampfer, Martha R, and Garbe, James C. Tue . "Increasing cell culture population doublings for long-term growth of finite life span human cell cultures". United States. doi:. https://www.osti.gov/servlets/purl/1171090.
@article{osti_1171090,
title = {Increasing cell culture population doublings for long-term growth of finite life span human cell cultures},
author = {Stampfer, Martha R and Garbe, James C},
abstractNote = {Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 24 00:00:00 EST 2015},
month = {Tue Feb 24 00:00:00 EST 2015}
}

Patent:

Save / Share:
  • Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.
  • The decidualized endometrium during the first trimester of pregnancy synthesizes and secretes a 32-kDa insulin-like growth factor-binding protein (termed hIGFBP-1) at high levels. IGFBP-1 is the major soluble protein product of this tissue and is principally localized to the differentiated endometrial stromal cell, the decidual cell. In the present study long term culture of stromal cells from the nonpregnant endometrium have been employed to elucidate the hormonal requirements for IGFBP-1 production. Immunoreactive IGFBP-1 was undetectable in control cultures. However, inclusion of medroxyprogesterone acetate (MPA) induced rates of 0.35 +/- 0.09 microgram/0.1 mg cell DNA.day after 20-30 days. In these culturesmore » cells exhibited morphological changes consistent with decidual cell differentiation. In all cultures removal of MPA after exposure for 10-16 days, with or without subsequent inclusion of relaxin (RLX), increased production of IGFBP-1 450- to 4600-fold to rates of 150-710 micrograms/0.1 mg cell DNA.day or 26-131 micrograms/10(6) cells.day on days 24-26. The rates tended to be higher with the inclusion of RLX and were sustained in contrast to cultures without RLX, where rates fell by day 30. Individual cultures responded differently to RLX when added from the initiation of culture, with either a response similar to MPA alone or a cyclical change in production, achieving maximal rates of 190-290 micrograms/0.1 mg cell DNA.day. Cultures in which RLX alone induced high IGFBP-1 high production were obtained from endometrium during the progesterone-dominated luteal phase. In cultures exhibiting high rates of immunoreactive IGFBP-1 production, the protein represented their major secretory protein product. This was confirmed by ({sup 35}S)methionine incorporation and the presence of IGFBP-1 as the predominant protein in serum-free culture medium.« less
  • Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dosemore » dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes.« less
  • The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using amore » two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor cells in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors.« less