skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma

Abstract

Evidence is provided for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments verify wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are like the scale length of electrostatic drift wave turbulence. Theoretical analysis verifies a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [1];  [6];  [1];  [6];  [3];  [5];  [6];  [4];  [4];  [1];  [3];  [7];  [4]
  1. Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
  2. Univ. of Texas, Austin, TX (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Univ. of California, Los Angeles, CA (United States)
  5. Univ. of Wisconsin, Madison, WI (United States)
  6. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  7. Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Univ. of Texas, Austin, TX (United States); Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1171037
DOE Contract Number:
DE-AC02-76CH03073; DE-FG03- 97ER54415; DE-FC02-04ER54698; DE-FG03- 01ER5461; DE-FG03-96ER54373; W-7405-ENG-48; DE-AC05-76OR00033
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review Letters; Journal Volume: 96; Journal Issue: 10
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Nazikian, R., Berk, H. L., Budny, R. V., Burrell, K. H., Doyle, E. J., Fonck, R. J., Gorelenkov, N. N., Holcomb, C., Kramer, G. J., Jayakumar, R. J., La Haye, R. J., McKee, G. R., Makowski, M. A., Peebles, W. A., Rhodes, T. L., Solomon, W. M., Strait, E. J., VanZeeland, M. A., and Zeng, L.. Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma. United States: N. p., 2006. Web. doi:10.1103/PhysRevLett.96.105006.
Nazikian, R., Berk, H. L., Budny, R. V., Burrell, K. H., Doyle, E. J., Fonck, R. J., Gorelenkov, N. N., Holcomb, C., Kramer, G. J., Jayakumar, R. J., La Haye, R. J., McKee, G. R., Makowski, M. A., Peebles, W. A., Rhodes, T. L., Solomon, W. M., Strait, E. J., VanZeeland, M. A., & Zeng, L.. Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma. United States. doi:10.1103/PhysRevLett.96.105006.
Nazikian, R., Berk, H. L., Budny, R. V., Burrell, K. H., Doyle, E. J., Fonck, R. J., Gorelenkov, N. N., Holcomb, C., Kramer, G. J., Jayakumar, R. J., La Haye, R. J., McKee, G. R., Makowski, M. A., Peebles, W. A., Rhodes, T. L., Solomon, W. M., Strait, E. J., VanZeeland, M. A., and Zeng, L.. Wed . "Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma". United States. doi:10.1103/PhysRevLett.96.105006.
@article{osti_1171037,
title = {Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma},
author = {Nazikian, R. and Berk, H. L. and Budny, R. V. and Burrell, K. H. and Doyle, E. J. and Fonck, R. J. and Gorelenkov, N. N. and Holcomb, C. and Kramer, G. J. and Jayakumar, R. J. and La Haye, R. J. and McKee, G. R. and Makowski, M. A. and Peebles, W. A. and Rhodes, T. L. and Solomon, W. M. and Strait, E. J. and VanZeeland, M. A. and Zeng, L.},
abstractNote = {Evidence is provided for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments verify wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are like the scale length of electrostatic drift wave turbulence. Theoretical analysis verifies a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.},
doi = {10.1103/PhysRevLett.96.105006},
journal = {Physical Review Letters},
number = 10,
volume = 96,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2006},
month = {Wed Mar 01 00:00:00 EST 2006}
}