skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Real time explosive hazard information sensing, processing, and communication for autonomous operation

Abstract

Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

Inventors:
; ; ; ;
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1170732
Patent Number(s):
8,965,578
Application Number:
13/049,788
Assignee:
Battelle Energy Alliance, LLC (Idaho Falls, ID) IDO
DOE Contract Number:
AC07-05ID14517
Resource Type:
Patent
Resource Relation:
Patent File Date: 2011 Mar 16
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Versteeg, Roelof J, Few, Douglas A, Kinoshita, Robert A, Johnson, Doug, and Linda, Ondrej. Real time explosive hazard information sensing, processing, and communication for autonomous operation. United States: N. p., 2015. Web.
Versteeg, Roelof J, Few, Douglas A, Kinoshita, Robert A, Johnson, Doug, & Linda, Ondrej. Real time explosive hazard information sensing, processing, and communication for autonomous operation. United States.
Versteeg, Roelof J, Few, Douglas A, Kinoshita, Robert A, Johnson, Doug, and Linda, Ondrej. Tue . "Real time explosive hazard information sensing, processing, and communication for autonomous operation". United States. doi:. https://www.osti.gov/servlets/purl/1170732.
@article{osti_1170732,
title = {Real time explosive hazard information sensing, processing, and communication for autonomous operation},
author = {Versteeg, Roelof J and Few, Douglas A and Kinoshita, Robert A and Johnson, Doug and Linda, Ondrej},
abstractNote = {Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 24 00:00:00 EST 2015},
month = {Tue Feb 24 00:00:00 EST 2015}
}

Patent:

Save / Share: