skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developing Fully Coupled Subchannel Model in RELAP-7


This is a DOE milestone report documenting the implementation of the subchannel model into the RELAP-7 code.

 [1];  [1];  [1];  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Country of Publication:
United States

Citation Formats

Zhang, Hongbin, Zou, Ling, Zhao, Haihua, and Martineau, Richard. Developing Fully Coupled Subchannel Model in RELAP-7. United States: N. p., 2014. Web. doi:10.2172/1170321.
Zhang, Hongbin, Zou, Ling, Zhao, Haihua, & Martineau, Richard. Developing Fully Coupled Subchannel Model in RELAP-7. United States. doi:10.2172/1170321.
Zhang, Hongbin, Zou, Ling, Zhao, Haihua, and Martineau, Richard. Mon . "Developing Fully Coupled Subchannel Model in RELAP-7". United States. doi:10.2172/1170321.
title = {Developing Fully Coupled Subchannel Model in RELAP-7},
author = {Zhang, Hongbin and Zou, Ling and Zhao, Haihua and Martineau, Richard},
abstractNote = {This is a DOE milestone report documenting the implementation of the subchannel model into the RELAP-7 code.},
doi = {10.2172/1170321},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Sep 01 00:00:00 EDT 2014},
month = {Mon Sep 01 00:00:00 EDT 2014}

Technical Report:

Save / Share:
  • The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. Asmore » part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.« less
  • The basis for the coupled neutron kinetic-thermal hydraulic model for the General Electric Test Reactor is presented. The model consists of the necessary input data for the RELAP-4 computer program. The model is used in conjunction with the RELAP-4 program to predict the transient performance of the General Electric Test Reactor core. This work was performed as part of the safety analyses of the General Electric Test Reactor.
  • The RELAP-7 code verification and validation activities are ongoing under the code assessment plan proposed in the previous document (INL-EXT-16-40015). Among the list of V&V test problems in the ‘RELAP-7 code V&V RTM (Requirements Traceability Matrix)’, the RELAP-7 7-equation model has been tested with additional demonstration problems and the results of these tests are reported in this document. In this report, we describe the testing process, the test cases that were conducted, and the results of the evaluation.
  • In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an activemore » component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].« less
  • The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less