skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures


This presentation describes heavy fermion materials and their scientific impact.

 [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Country of Publication:
United States

Citation Formats

Yarotski, Dmitry Anatolievitch, and Sandberg, Richard L. Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures. United States: N. p., 2015. Web. doi:10.2172/1170261.
Yarotski, Dmitry Anatolievitch, & Sandberg, Richard L. Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures. United States. doi:10.2172/1170261.
Yarotski, Dmitry Anatolievitch, and Sandberg, Richard L. 2015. "Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures". United States. doi:10.2172/1170261.
title = {Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures},
author = {Yarotski, Dmitry Anatolievitch and Sandberg, Richard L.},
abstractNote = {This presentation describes heavy fermion materials and their scientific impact.},
doi = {10.2172/1170261},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 2

Technical Report:

Save / Share:
  • Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactionsmore » between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.« less
  • The objectives of this research are to: 1) determine the catalytic behavior of model Pd and Rh catalysts on unpromoted and ceria-promoted supports, for the reduction of NO and N2O with CO, 2) determine the microstructures of the catalysts both before and after reaction in order to understand the catalytic behavior, and 3) understand the role of the metal/support interface in the catalytic process. The research examined the influence of Pd particle size and ceria loading on catalytic reaction for the NO+CO reaction. Dihydrogen chemisorption, temperature-programmed desorption (TPD) of NO, and high-resolution transmission electron microscopy (HRTEM) were used to characterizemore » the catalyst samples. It was found that when ceria is used to promote Pd particles, the activity for NO+CO was a maximum for 2-nm-sized Pd particles. The maximum in activity results from a balance between the Pd/ceria interface, which enhances NO dissociation, and the close-packed planes of the Pd particles that facilitate product formation and/or desorption. The variations in apparent reaction orders and results from TPD were consistent with the idea that NO dissociation is promoted on very small particles (1 nm) and by the addition of ceria. Characterization of the catalysts by HRTEM showed that the ceria was typically present in the form of small crystallites from 3-7 nm in diameter, deposited near Pd particles, rather than as a thin film on the alumina support. This occurred whether the ceria was deposited before or after the Pd particles.« less
  • This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less
  • Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection.more » Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.« less
  • We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.