skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

Journal Article · · Nature, 515(7527):393-397
DOI:https://doi.org/10.1038/nature13893· OSTI ID:1170108

The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1170108
Report Number(s):
PNNL-SA-107416; 400409900
Journal Information:
Nature, 515(7527):393-397, Journal Name: Nature, 515(7527):393-397
Country of Publication:
United States
Language:
English

Similar Records

Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: A multimodel analysis
Journal Article · Wed Sep 14 00:00:00 EDT 2016 · Biogeosciences (Online) · OSTI ID:1170108

Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
Journal Article · Tue Nov 27 00:00:00 EST 2018 · Environmental Research Letters · OSTI ID:1170108

Modeling seasonal changes of atmospheric carbon dioxide and carbon 13
Journal Article · Sun Apr 20 00:00:00 EST 1986 · J. Geophys. Res.; (United States) · OSTI ID:1170108

Related Subjects