skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods for isolation and viability assessment of biological organisms

Abstract

Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

Inventors:
; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1169062
Patent Number(s):
8,947,657
Application Number:
13/117,079
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA) LSO
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Letant, Sonia Edith, Baker, Sarah Elyse, Bond, Tiziana, and Chang, Allan Shih-Ping. Methods for isolation and viability assessment of biological organisms. United States: N. p., 2015. Web.
Letant, Sonia Edith, Baker, Sarah Elyse, Bond, Tiziana, & Chang, Allan Shih-Ping. Methods for isolation and viability assessment of biological organisms. United States.
Letant, Sonia Edith, Baker, Sarah Elyse, Bond, Tiziana, and Chang, Allan Shih-Ping. Tue . "Methods for isolation and viability assessment of biological organisms". United States. doi:. https://www.osti.gov/servlets/purl/1169062.
@article{osti_1169062,
title = {Methods for isolation and viability assessment of biological organisms},
author = {Letant, Sonia Edith and Baker, Sarah Elyse and Bond, Tiziana and Chang, Allan Shih-Ping},
abstractNote = {Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 03 00:00:00 EST 2015},
month = {Tue Feb 03 00:00:00 EST 2015}
}

Patent:

Save / Share:

Works referenced in this record:

Self-referenced assay method for photonic crystal biosensors: Application to small molecule analytes
journal, January 2007

  • Chan, Leo L.; Cunningham, Brian T.; Li, Peter Y.
  • Sensors and Actuators B: Chemical, Vol. 120, Issue 2, p. 392-398
  • DOI: 10.1016/j.snb.2006.02.047

Immobilization of antibodies in micropatterns for cell detection by optical diffraction
journal, November 2000


Photonic crystal laser sources for chemical detection
journal, June 2003

  • Lončar, Marko; Scherer, Axel; Qiu, Yueming
  • Applied Physics Letters, Vol. 82, Issue 26, p. 4648-4650
  • DOI: 10.1063/1.1586781

Functionalized silicon membranes for selective bio-organism capture
journal, April 2003

  • Létant, Sonia E.; Hart, Bradley R.; van Buuren, Anthony W.
  • Nature Materials, Vol. 2, Issue 6, p. 391-395
  • DOI: 10.1038/nmat888

Enzyme Immobilization on Porous Silicon Surfaces
journal, February 2004

  • Létant, S. E.; Hart, B. R.; Kane, S. R.
  • Advanced Materials, Vol. 16, Issue 8, p. 689-693
  • DOI: 10.1002/adma.200306173

Localized Functionalization of Single Nanopores
journal, February 2006

  • Nilsson, J.; Lee, J. R. I.; Ratto, T. V.
  • Advanced Materials, Vol. 18, Issue 4, p. 427-431
  • DOI: 10.1002/adma.200501991

Integration of porous silicon chips in an electronic artificial nose
journal, September 2000

  • Létant, S. E.; Content, S.; Tan, Tze Tsung
  • Sensors and Actuators B: Chemical, Vol. 69, Issue 1-2, p. 193-198
  • DOI: 10.1016/S0925-4005(00)00539-6

New biochip technology for label-free detection of pathogens and their toxins
journal, May 2003

  • Grow, Ann E.; Wood, Laurie L.; Claycomb, Johanna L.
  • Journal of Microbiological Methods, Vol. 53, Issue 2, p. 221-233
  • DOI: 10.1016/S0167-7012(03)00026-5

National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces
journal, May 2010

  • Hodges, Lisa R.; Rose, Laura J.; O'Connell, Heather
  • Journal of Microbiological Methods, Vol. 81, Issue 2, p. 141-146
  • DOI: 10.1016/j.mimet.2010.02.010

Cryo-electron tomography of vaccinia virus
journal, February 2005

  • Cyrklaff, M.; Risco, C.; Fernandez, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 8, p. 2772-2777
  • DOI: 10.1073/pnas.0409825102

Towards on-site pathogen detection using antibody-based sensors
journal, November 2008

  • Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer
  • Biosensors and Bioelectronics, Vol. 24, Issue 3, p. 339-348
  • DOI: 10.1016/j.bios.2008.06.045

Most-Probable-Number Rapid Viability PCR method to detect viable spores of Bacillus anthracis in swab samples
journal, May 2010

  • Létant, S. E.; Kane, S. R.; Murphy, G. A.
  • Journal of Microbiological Methods, Vol. 81, Issue 2, p. 200-202
  • DOI: 10.1016/j.mimet.2010.02.011

Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates
journal, March 2009

  • Kane, S. R.; Létant, S. E.; Murphy, G. A.
  • Journal of Microbiological Methods, Vol. 76, Issue 3, p. 278-284
  • DOI: 10.1016/j.mimet.2008.12.005

Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates
journal, March 2009

  • Kane, S. R.; Létant, S. E.; Murphy, G. A.
  • Journal of Microbiological Methods, Vol. 76, Issue 3, p. 278-284
  • DOI: 10.1016/j.mimet.2008.12.005

Fouling study of silicon oxide pores exposed to tap water
journal, May 2007

  • Nilsson, Joakim; Bourcier, William L.; Lee, Jonathan R. I.
  • Materials Letters, Vol. 61, Issue 11-12, p. 2247-2250
  • DOI: 10.1016/j.matlet.2006.08.062

Fouling study of silicon oxide pores exposed to tap water
journal, May 2007

  • Nilsson, Joakim; Bourcier, William L.; Lee, Jonathan R. I.
  • Materials Letters, Vol. 61, Issue 11-12, p. 2247-2250
  • DOI: 10.1016/j.matlet.2006.08.062

Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing
journal, June 2010

  • Andrade, Gustavo F. S.; Fan, MeiKun; Brolo, Alexandre G.
  • Biosensors and Bioelectronics, Vol. 25, Issue 10, p. 2270-2275
  • DOI: 10.1016/j.bios.2010.03.007

Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles
journal, August 1997


Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer
journal, May 2005

  • El-Sayed, Ivan H.; Huang, Xiaohua; El-Sayed, Mostafa A.
  • Nano Letters, Vol. 5, Issue 5, p. 829-834
  • DOI: 10.1021/nl050074e

Raman spectra of pyridine adsorbed at a silver electrode
journal, May 1974


A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles
journal, September 2002

  • Haes, Amanda J.; Van Duyne, Richard P.
  • Journal of the American Chemical Society, Vol. 124, Issue 35, p. 10596-10604
  • DOI: 10.1021/ja020393x

A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease
journal, June 2004

  • Haes, Amanda J.; Hall, W. Paige; Chang, Lei
  • Nano Letters, Vol. 4, Issue 6, p. 1029-1034
  • DOI: 10.1021/nl049670j

Nanostructured model biomaterial surfaces prepared by colloidal lithography
journal, January 1999


Exploitation of Localized Surface Plasmon Resonance
journal, October 2004


Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)
journal, March 1997


Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing
journal, January 2009

  • Kostovski, G.; White, D. J.; Mitchell, A.
  • Biosensors and Bioelectronics, Vol. 24, Issue 5, p. 1531-1535
  • DOI: 10.1016/j.bios.2008.10.016

Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers
journal, February 2001

  • Malinsky, Michelle Duval; Kelly, K. Lance; Schatz, George C.
  • Journal of the American Chemical Society, Vol. 123, Issue 7, p. 1471-1482
  • DOI: 10.1021/ja003312a

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering
journal, February 1997


Optical characterization of electronic transitions arising from the Au/S interface of self-assembled n-alkanethiolate monolayers
journal, November 1995


Fabrication of Crescent-Shaped Optical Antennas
journal, September 2005

  • Shumaker-Parry, J. S.; Rochholz, H.; Kreiter, M.
  • Advanced Materials, Vol. 17, Issue 17, p. 2131-2134
  • DOI: 10.1002/adma.200500063

Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy
journal, September 2003

  • Tao, Andrea; Kim, Franklin; Hess, Christian
  • Nano Letters, Vol. 3, Issue 9, p. 1229-1233
  • DOI: 10.1021/nl0344209

Single-fibre surface-enhanced Raman sensors with angled tips
journal, January 2000


Comparison of fibre-optic SERS sensors with differently prepared tips
journal, August 1998


Development of silver nanorod array based fiber optic probes for SERS detection
journal, September 2011

  • Zhu, Yu; Dluhy, Richard A.; Zhao, Yiping
  • Sensors and Actuators B: Chemical, Vol. 157, Issue 1, p. 42-50
  • DOI: 10.1016/j.snb.2011.03.024