skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

Abstract

In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

Authors:
 [1];  [1];  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1168645
Report Number(s):
INL/EXT-14-33186
TRN: US1600075
DOE Contract Number:
AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; SAFETY ANALYSIS; NUCLEAR POWER PLANTS; SAFETY MARGINS; EXPERIMENTAL REACTORS; WATER COOLED REACTORS; WATER MODERATED REACTORS; PROBABILISTIC ESTIMATION; DESIGN; SUSTAINABILITY; VALIDATION; MODIFICATIONS; MONITORING; SCHEDULES; SIMULATION; STORAGE; VERIFICATION; RADIOACTIVE MATERIALS; Advanced Safety Analysis; RISMC

Citation Formats

Szilard, Ronaldo H., Smith, Curtis L., and Youngblood, Robert. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019. United States: N. p., 2014. Web. doi:10.2172/1168645.
Szilard, Ronaldo H., Smith, Curtis L., & Youngblood, Robert. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019. United States. doi:10.2172/1168645.
Szilard, Ronaldo H., Smith, Curtis L., and Youngblood, Robert. Mon . "RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019". United States. doi:10.2172/1168645. https://www.osti.gov/servlets/purl/1168645.
@article{osti_1168645,
title = {RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019},
author = {Szilard, Ronaldo H. and Smith, Curtis L. and Youngblood, Robert},
abstractNote = {In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.},
doi = {10.2172/1168645},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Sep 01 00:00:00 EDT 2014},
month = {Mon Sep 01 00:00:00 EDT 2014}
}

Technical Report:

Save / Share:
  • DOE-NE separations research is focused today on developing a science-based understanding that builds on historical research and focuses on combining a fundamental understanding of separations and waste forms processes with small-scale experimentation coupled with modeling and simulation. The result of this approach is the development of a predictive capability that supports evaluation of separations and waste forms technologies. The specific suite of technologies explored will depend on and must be integrated with the fuel development effort, as well as an understanding of potential waste form requirements. This five-year implementation plan lays out the specific near-term tactical investments in people, equipmentmore » and facilities, and customer capture efforts that will be required over the next five years to quickly and safely bring on line the capabilities needed to support the science-based goals and objectives of INL’s Advanced Separations and Waste Forms RD&D Capabilities Strategic Plan.« less
  • This report documents the mobile source emission estimation methodology used for the conformity analysis of the Transportation Improvement Program (TIP) and the metropolitan plan for Victoria County. Included in the report is a brief overview of the emission estimation methodology and the 24-hour traffic assignments used in the analyses; the methods used to estimate the seasonally adjusted time-of-day vehicle miles of travel and associated operating speeds; the estimation of the emission rates using the EPA`s MOBILE5a program; and brief outline of the method used to develop the emission estimates using the MOBILE5a emission rates and comparison of the emission estimatesmore » for the Build and No Build options. An appendix presents the emission rates developed for conformity analysis.« less
  • Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less
  • Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less
  • Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs.more » Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.« less