skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural insights into 50 flap DNA unwinding and incision by the human FAN1 dimer

; ; ; ;  [1]
  1. (Yale-MED)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nat. Commun.; Journal Volume: 5; Journal Issue: 12, 2014
Country of Publication:
United States

Citation Formats

Zhao, Qi, Xue, Xiaoyu, Longerich, Simonne, Sung, Patrick, and Xiong, Yong. Structural insights into 50 flap DNA unwinding and incision by the human FAN1 dimer. United States: N. p., 2015. Web. doi:10.1038/ncomms6726.
Zhao, Qi, Xue, Xiaoyu, Longerich, Simonne, Sung, Patrick, & Xiong, Yong. Structural insights into 50 flap DNA unwinding and incision by the human FAN1 dimer. United States. doi:10.1038/ncomms6726.
Zhao, Qi, Xue, Xiaoyu, Longerich, Simonne, Sung, Patrick, and Xiong, Yong. 2015. "Structural insights into 50 flap DNA unwinding and incision by the human FAN1 dimer". United States. doi:10.1038/ncomms6726.
title = {Structural insights into 50 flap DNA unwinding and incision by the human FAN1 dimer},
author = {Zhao, Qi and Xue, Xiaoyu and Longerich, Simonne and Sung, Patrick and Xiong, Yong},
abstractNote = {},
doi = {10.1038/ncomms6726},
journal = {Nat. Commun.},
number = 12, 2014,
volume = 5,
place = {United States},
year = 2015,
month = 1
  • Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less
  • DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less
  • No abstract prepared.
  • cdc9, a temperature-sensitive mutant defective in polynucleotide deoxyribonucleic acid (DNA) ligase activity, accumulates low-molecular-weight DNA fragments (as measured by sedimentation of DNA in alkaline sucrose gradients) at the nonpermissive temperature after irradiation with ultraviolet light. This phenotype of cdc9 is a sensitive indicator of successful incision during excision repair of dimers. In strains containing excision-defective mutations in any of nine genes in combination with the cdc9 mutation, the absence of low-molecular-weight DNA at the nonpermissive temperature after ultraviolet treatment suggests that these mutants are incision defective, whereas the presence of low-molecular-weight DNA indicates that the mutants are defective in amore » step after incision. With rad1, rad2, rad3, rad4, and rad10 mutants, the molecular weight of the DNA remained unchanged after ultraviolet irradiation and incubation at the restrictive temperature, despite the presence of the cdc9 mutation; these mutants are therefore incision defective. Low-molecular-weight DNA was observed in rad14 cdc9 and rad16 cdc9 strains. With the rad16 strain, the accumulation of low-molecular-weight DNA correlated with the amount of excision taking place, whereas in the rad14 mutant strain, no evidence of dimer removal was obtained. Therefore, rad14 is likely to be defective in a step after incision.« less
  • A group of genetically related ultraviolet (uv)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to uv radiation, their ability to carry out excision repair or pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-uv incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD/sup +/ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14,more » and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The uv-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to uv radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of uv-irradiated DNA during pyrimidine dimer excision in vivo.« less