skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Los Alamos Explosives Performance Key to Stockpile Stewardship

Abstract

As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

Authors:
Publication Date:
Research Org.:
LANL (Los Alamos National Laboratory (LANL), Los Alamos, NM (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1166961
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 42 ENGINEERING; STOCKPILE; SHOCK WAVE; PRESSURE; TEMPERATURE; DETONATION; EXPLOSIVE; DIAGNOSTICS

Citation Formats

Dattelbaum, Dana. Los Alamos Explosives Performance Key to Stockpile Stewardship. United States: N. p., 2014. Web.
Dattelbaum, Dana. Los Alamos Explosives Performance Key to Stockpile Stewardship. United States.
Dattelbaum, Dana. 2014. "Los Alamos Explosives Performance Key to Stockpile Stewardship". United States. doi:. https://www.osti.gov/servlets/purl/1166961.
@article{osti_1166961,
title = {Los Alamos Explosives Performance Key to Stockpile Stewardship},
author = {Dattelbaum, Dana},
abstractNote = {As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2014,
month =
}
  • "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.
  • A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.
  • In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun,more » the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.« less
  • I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn overmore » and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.« less
  • Los Alamos National Laboratory is contributing to the core science and technology of the inertial confinement fusion program leading to the National Ignition Facility. Short summaries of a sample of recent experimental and related theoretical work are presented. 16 refs., 6 figs.