skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of composition and heat treatment on MnBi magnetic materials

Journal Article · · Acta Materialia

The metallic compound MnBi is a promising rare-earth-free permanent magnet material, unique among all candidates for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. The Hci of MnBi in thin-film or powder form can exceed 12 and 26 kOe at 300 and 523 K, respectively. Such a steep rise in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. However, the reaction between Mn and Bi is peritectic, and hence Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, when the alloy is prepared using conventional induction or arc-melting casting methods, additional Mn is required to compensate the precipitation of Mn. In addition to composition, post-casting annealing plays an important role in obtaining a high content of MnBi low-temperature phase (LTP) because the annealing encourages the Mn precipitates and the unreacted Bi to react, forming the desired LTP phase. Here we report a systematic study of the effect of composition and heat treatments on the phase content and magnetic properties of Mn–Bi alloys. In this study, 14 compositions were prepared using conventional metallurgical methods, and the compositions, crystal structures, phase content and magnetic properties of the resulting alloys were analyzed. The results show that the composition with 55 at.% Mn exhibits both the highest LTP content (93 wt.%) and magnetization (74 emu g-1 with 9 T applied field at 300 K).

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-07CH11358
OSTI ID:
1166904
Report Number(s):
IS-J 8498
Journal Information:
Acta Materialia, Vol. 79; ISSN 1359-6454
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Similar Records

Effect of Composition and Heat Treatment on MnBi Magnetic Materials
Journal Article · Sun Aug 17 00:00:00 EDT 2014 · Acta Materialia, 79:374-381 · OSTI ID:1166904

Optimizing composition in MnBi permanent magnet alloys
Journal Article · Mon Oct 07 00:00:00 EDT 2019 · Acta Materialia · OSTI ID:1166904

Unexpected Magnetic Domain Behavior in LTP-MnBi
Journal Article · Mon Jul 01 00:00:00 EDT 2013 · IEEE Transactions on Magnetics · OSTI ID:1166904