skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

Abstract

This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but itmore » can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive layers of the TRISO-coated particle and potentially through the compact matrix. The release of these fission products was measured in PIE and modeled with PARFUME.« less

Authors:
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
1164852
Report Number(s):
INL/EXT-14-31975
DOE Contract Number:
DE-AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; Advanced Test Reactor (ATR); NGNP; PARFUME (PARticle FUel ModEl); Post-irradiation examination (PIE); silicon carbide (SiC); TDO; tristructural isotropic (TRISO); VHTR

Citation Formats

Blaise Collin. Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment. United States: N. p., 2014. Web. doi:10.2172/1164852.
Blaise Collin. Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment. United States. doi:10.2172/1164852.
Blaise Collin. Mon . "Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment". United States. doi:10.2172/1164852. https://www.osti.gov/servlets/purl/1164852.
@article{osti_1164852,
title = {Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment},
author = {Blaise Collin},
abstractNote = {This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive layers of the TRISO-coated particle and potentially through the compact matrix. The release of these fission products was measured in PIE and modeled with PARFUME.},
doi = {10.2172/1164852},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Sep 01 00:00:00 EDT 2014},
month = {Mon Sep 01 00:00:00 EDT 2014}
}

Technical Report:

Save / Share:
  • The PARFUME (PARticle FUel ModEl) code was used to predict fission product release from tristructural isotropic (TRISO) coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of fission products silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of fission products from fuel compacts and fuel particles, andmore » retention of fission products in the compacts outside of the SiC layer. PARFUME-predicted fractional release of these fission products was determined and compared to the PIE measurements. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed silicon carbide (SiC) layers, the over-prediction is by a factor of about two, corresponding to an over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of about 100. For intact particles, whose release is much lower, the over-prediction is by an average of about an order of magnitude, which could additionally be attributed to an over-estimated diffusivity in SiC by about 30%. The release of strontium from intact particles is also over-estimated by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO. In the case of silver, the comparisons between PARFUME and PIE are better than for cesium and strontium. They show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons lie in the same order of magnitude.« less
  • Safety tests were conducted on fourteen fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800°C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during the safety tests, and the predicted values were compared with experimental results. Preliminary comparisons between PARFUME predictions and post-irradiation examination (PIE) results of the safety testsmore » show different trends in the prediction of the fractional release depending on the species, and it leads to different conclusions regarding the diffusivities used in the modeling of fission product transport in TRISO-coated particles: • For silver, the diffusivity in silicon carbide (SiC) might be over-estimated by a factor of at least 102 to 103 at 1600°C and 1700°C, and at least 10 to 102 at 1800°C. The diffusivity of silver in uranium oxy-carbide (UCO) might also be over-estimated, but the available data are insufficient to allow definitive conclusions to be drawn. • For cesium, the diffusivity in UCO might be over-estimated by a factor of at least 102 to 103 at 1600°C, 105 at 1700°C, and 103 at 1800°C. The diffusivity of cesium in SiC might also over-estimated, by a factor of 10 at 1600°C and 103 at 1700°C, based upon the comparisons between calculated and measured release fractions from intact particles. There is no available estimate at 1800°C since all the compacts heated up at 1800°C contain particles with failed SiC layers whose release dominates the release from intact particles. • For strontium, the diffusivity in SiC might be over-estimated by a factor of 10 to 102 at 1600 and 1700°C, and 102 to 103 at 1800°C. These values might be somewhat over-estimated because the strontium retention during irradiation cannot be assessed a priori, which affects the magnitude of the calculated release during safety testing. The diffusivity of strontium in UCO cannot be derived from these heating tests, but it is assumed to be modeled correctly using the IAEA recommended value for kernel diffusivity. • For krypton, there is no reliable release data for compacts heated up at 1600°C, which includes all the compacts containing only intact particles. At 1700 and 1800°C, comparisons show an over-prediction of the release from compacts containing particles with failed SiC by 1 to 1.5 orders of magnitude. The available data from these heating tests do not allow to determine which of the TRISO-coating’s layers diffusivities are under or over-estimated.« less
  • Safety tests were conducted on fourteen fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800°C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during the safety tests, and the predicted values were compared with experimental results. Preliminary comparisons between PARFUME predictions and post-irradiation examination (PIE) results of the safety testsmore » show an overall over-prediction of the fractional release of these fission products, which is largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. Correction factors to these diffusivities were assessed for silver and cesium in order to enable a better match between the modeling predictions and the safety testing results. In the case of strontium, correction factors could not be assessed because potential release during the safety tests could not be distinguished from matrix content released during irradiation. In the case of krypton, all the coating layers are partly retentive and the available data did not allow to determine their respective retention powers, hence preventing to derive any correction factors.« less
  • Safety tests were conducted on fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800 °C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during 15 of these safety tests. Comparisons between PARFUME predictions and post-irradiation examination results of the safety tests were conducted on two types of AGR-1 compacts: compactsmore » containing only intact particles and compacts containing one or more particles whose SiC layers failed during safety testing. In both cases, PARFUME globally over-predicted the experimental release fractions by several orders of magnitude: more than three (intact) and two (failed SiC) orders of magnitude for silver, more than three and up to two orders of magnitude for strontium, and up to two and more than one orders of magnitude for krypton. The release of cesium from intact particles was also largely over-predicted (by up to five orders of magnitude) but its release from particles with failed SiC was only over-predicted by a factor of about 3. These over-predictions can be largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. The integral release nature of the data makes it difficult to estimate the individual over-estimations in the kernel or each coating layer. Nevertheless, a tentative assessment of correction factors to these diffusivities was performed to enable a better match between the modeling predictions and the safety testing results. The method could only be successfully applied to silver and cesium. In the case of strontium, correction factors could not be assessed because potential release during the safety tests could not be distinguished from matrix content released during irradiation. Furthermore, in the case of krypton, all the coating layers are partly retentive and the available data did not allow the level of retention in individual layers to be determined, hence preventing derivation of any correction factors.« less