skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

Abstract

Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A,more » Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.« less

Authors:
 [1];  [2];  [2];  [1];  [3]
  1. National Inst. of Advanced Industrial Science and Technology (AIST), Hiroshima (Japan)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Kyoto Univ. (Japan). Graduate School of Agriculture Division of Applied Biosciences
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
OSTI Identifier:
1164092
Report Number(s):
NREL/JA-2700-62636
Journal ID: ISSN 1754-6834
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 1754-6834
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; Chemical and Biosciences; Talaromyces cellulolyticus; lignocellulose; cellulases; pretreated corn stover; enzymatic hydrolysis

Citation Formats

Inoue, Hiroyuki, Decker, Stephen R., Taylor, Larry E., Yano, Shinichi, and Sawayama, Shigeki. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. United States: N. p., 2014. Web. doi:10.1186/s13068-014-0151-5.
Inoue, Hiroyuki, Decker, Stephen R., Taylor, Larry E., Yano, Shinichi, & Sawayama, Shigeki. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. United States. doi:10.1186/s13068-014-0151-5.
Inoue, Hiroyuki, Decker, Stephen R., Taylor, Larry E., Yano, Shinichi, and Sawayama, Shigeki. Thu . "Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass". United States. doi:10.1186/s13068-014-0151-5. https://www.osti.gov/servlets/purl/1164092.
@article{osti_1164092,
title = {Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass},
author = {Inoue, Hiroyuki and Decker, Stephen R. and Taylor, Larry E. and Yano, Shinichi and Sawayama, Shigeki},
abstractNote = {Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.},
doi = {10.1186/s13068-014-0151-5},
journal = {Biotechnology for Biofuels},
number = 1,
volume = 7,
place = {United States},
year = {Thu Oct 09 00:00:00 EDT 2014},
month = {Thu Oct 09 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Methods for measuring cellulase activities
journal, January 1988


Cellulase digestibility of pretreated biomass is limited by cellulose accessibility
journal, January 2007

  • Jeoh, Tina; Ishizawa, Claudia I.; Davis, Mark F.
  • Biotechnology and Bioengineering, Vol. 98, Issue 1, p. 112-122
  • DOI: 10.1002/bit.21408

Xylanases, xylanase families and extremophilic xylanases
journal, January 2005


Features of promising technologies for pretreatment of lignocellulosic biomass
journal, April 2005


Optimization of enzyme complexes for lignocellulose hydrolysis
journal, January 2007

  • Berlin, Alex; Maximenko, Vera; Gilkes, Neil
  • Biotechnology and Bioengineering, Vol. 97, Issue 2, p. 287-296
  • DOI: 10.1002/bit.21238

Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass
journal, December 2010


Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover
journal, April 2010

  • Gao, Dahai; Chundawat, Shishir P. S.; Krishnan, Chandraraj
  • Bioresource Technology, Vol. 101, Issue 8, p. 2770-2781
  • DOI: 10.1016/j.biortech.2009.10.056