skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanisms of Chromate Adsorption on Hematite

Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL)
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0016-7037
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Geochimica et Cosmochimica Acta; Journal Volume: 138
Country of Publication:
United States

Citation Formats

Johnston, C., and Chrysochoou, M.. Mechanisms of Chromate Adsorption on Hematite. United States: N. p., 2014. Web. doi:10.1016/j.gca.2014.04.030.
Johnston, C., & Chrysochoou, M.. Mechanisms of Chromate Adsorption on Hematite. United States. doi:10.1016/j.gca.2014.04.030.
Johnston, C., and Chrysochoou, M.. Fri . "Mechanisms of Chromate Adsorption on Hematite". United States. doi:10.1016/j.gca.2014.04.030.
title = {Mechanisms of Chromate Adsorption on Hematite},
author = {Johnston, C. and Chrysochoou, M.},
abstractNote = {},
doi = {10.1016/j.gca.2014.04.030},
journal = {Geochimica et Cosmochimica Acta},
number = ,
volume = 138,
place = {United States},
year = {Fri Aug 01 00:00:00 EDT 2014},
month = {Fri Aug 01 00:00:00 EDT 2014}
  • The constant capacitance model was used to describe phosphate adsorption on hematite, kaolinite, and a kaolinite-hematite system (k-h). The model assumes a ligand exchange mechanism and considers the charge on both adsorbate and adsorbent. The model is shown to provide a quantitative description of phosphate adsorption on these, including the effect of varying pH values. The computer program Ma-Za 2, a program that fits equilibrium constants to experimental data using an optimization technique, was used to obtain optimal values for the anion surface complexation constants on hematite, kaolinite, and a kaolinite-hematite system, while the PC program Ma-Za 1 in Q-Basicmore » language was used for the application of the constant capacitance model. The model represented adsorption of phosphate anions well over the entire pH range studied (3.8--9.0). The main advantage of the model is its ability to represent changes in anion adsorption occurring with changes in pH. Extension of the model to describe phosphate adsorption in a mixed system, such as the kaolinite-hematite system, using the surface protonation-dissociation constant of hematite was qualitatively successful. In mixed system the model reproduced the shape of the adsorption isotherms well over the pH range 3.8--9.0. However, phosphate adsorption was overestimated. The hematite and the kaolinite-hematite system were synthesized and identified by X-ray, NMR, and FT-IR spectroscopy.« less
  • Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (< a few hr) reduction of soluble Cr(VI) to insoluble Cr(III) species by Fe(II) in magnetite has been the primary focus of the Cr(VI) removal process in the past. However, the contribution of simultaneous Cr(VI) adsorption processes in aged magnetite has been largely ignored, leaving uncertainties in evaluating the application of in situ Cr remediation technologies for aqueous systems. In this study, effects of common groundwater ions (i.e., nitrate and sulfate) on Cr(VI) sorption to magnetite were investigated using batchmore » geochemical experiments in conjunction with X-ray absorption spectroscopy. As a result, in both nitrate and sulfate electrolytes, batch sorption experiments showed that Cr(VI) sorption decreases with increasing pH from 4 to 8. In this pH range, Cr(VI) sorption decreased with increasing ionic strength of sulfate from 0.01 to 0.1 M whereas nitrate concentrations did not alter the Cr(VI) sorption behavior. This indicates the background electrolyte specific Cr(VI) sorption process in magnetite. Under the same ionic strength, Cr(VI) removal in sulfate containing solutions was greater than that in nitrate solutions. This is because the oxidation of Fe(II) by nitrate is more thermodynamically favorable than by sulfate, leaving less reduction capacity of magnetite to reduce Cr(VI) in the nitrate media. X-ray absorption spectroscopy analysis supports the macroscopic evidence that more than 75 % of total Cr on the magnetite surfaces was adsorbed Cr(VI) species after 48 h. In conclusion, this experimental geochemical study showed that the adsorption process of Cr(VI) anions was as important as the reductive precipitation of Cr(III) in describing the removal of Cr(VI) by magnetite, and these interfacial adsorption processes could be impacted by common groundwater ions like sulfate and nitrate. The results of this study highlight new information about the large quantity of adsorbed Cr(VI) surface complexes at the magnetite-water interface. It has implications for predicting the long-term stability of Cr at the magnetite-water interface.« less
  • This is the first of two papers dealing with the adsorption of Au and formation of Au{sub n} nanostructures (n = 1–4) on hematite (0001) surface and adsorption of CO thereon. The stoichiometric Fe-terminated (0001) surface of hematite was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties of the systems studied were examined for vertical and flattened configurations of Au{sub n} nanostructures adsorbed on the hematite surfaces. The flattened ones, which can be viewed as bilayer-like structures, weremore » found energetically more favored than vertical ones. For both classes of structures the adsorption binding energy increases with the number of Au atoms in a structure. The adsorption of Au{sub n} induces charge rearrangement at the Au{sub n}/oxide contact which is reflected in work function changes. In most considered cases Au{sub n} adsorption increases the work function. A detailed analysis of the bonding electron charge is presented and the corresponding electron charge rearrangements at the contacts were quantified by a Bader charge analyses. The interaction of a CO molecule with the Au{sub n} nanostructures supported on α-Fe{sub 2}O{sub 3} (0001) and the oxide support was studied. It is found that the CO adsorption binding to the hematite supported Au{sub n} structures is more than twice as strong as to the bare hematite surface. Analysis of the Bader charges on the atoms showed that in each case CO binds to the most positively charged (cationic) atom of the Au{sub n} structure. Changes in the electronic structure of the Au{sub n} species and of the oxide support, and their consequences for the interactions with CO, are discussed.« less
  • The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less