skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile Synthesis and Electrochemical Performance of the Nanoscaled FePy Anode

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL)
Sponsoring Org.:
USDOE SC OFFICE OF SCIENCE (SC)
OSTI Identifier:
1162615
Report Number(s):
BNL-106560-2014-JA
Journal ID: ISSN 0378-7753
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Power Sources; Journal Volume: 270
Country of Publication:
United States
Language:
English

Citation Formats

Wang, G., Zhang, R., Jiang, T., Chernova, N., Dong, Z., and Whittingham, M. Facile Synthesis and Electrochemical Performance of the Nanoscaled FePy Anode. United States: N. p., 2014. Web. doi:10.1016/j.jpowsour.2014.07.095.
Wang, G., Zhang, R., Jiang, T., Chernova, N., Dong, Z., & Whittingham, M. Facile Synthesis and Electrochemical Performance of the Nanoscaled FePy Anode. United States. doi:10.1016/j.jpowsour.2014.07.095.
Wang, G., Zhang, R., Jiang, T., Chernova, N., Dong, Z., and Whittingham, M. Mon . "Facile Synthesis and Electrochemical Performance of the Nanoscaled FePy Anode". United States. doi:10.1016/j.jpowsour.2014.07.095.
@article{osti_1162615,
title = {Facile Synthesis and Electrochemical Performance of the Nanoscaled FePy Anode},
author = {Wang, G. and Zhang, R. and Jiang, T. and Chernova, N. and Dong, Z. and Whittingham, M.},
abstractNote = {},
doi = {10.1016/j.jpowsour.2014.07.095},
journal = {Journal of Power Sources},
number = ,
volume = 270,
place = {United States},
year = {Mon Dec 01 00:00:00 EST 2014},
month = {Mon Dec 01 00:00:00 EST 2014}
}
  • Sn{sub 4}Ni{sub 3}/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn{sub 4}Ni{sub 3}/C powders deliver an initial charge capacity of 525.2 mA h g{sup -1}, 400 mA h g{sup -1} over 10 cycles at 36 mA g{sup -1}, >300 mA h g{sup -1} after 40 cycles at 72 mA g{sup -1} and maintain 240 mAmore » h g{sup -1} for 40 cycles at 150 mA g{sup -1}. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment. - Graphical abstract: TEM image of the annealed Sn{sub 4}Ni{sub 3}/C nanocomposites reveals that the crystallized Sn{sub 4}Ni{sub 3} nanoparticles are dispersed in the carbon layer. The synergetic effect of ductile Ni and carbon layer is beneficial to buffer the volume change of Sn during discharge/charge process, thus improving the electrochemical performance when used as anode materials for lithium ion batteries. Highlights: Black-Right-Pointing-Pointer Sn{sub 4}Ni{sub 3} nanoparticles well dispersed in carbon matrix were successfully fabricated. Black-Right-Pointing-Pointer Stable cycling property was achieved due to the synergetic effect of Ni and carbon. Black-Right-Pointing-Pointer The cycling process did not change the structure and crystallinity of the materials.« less
  • Graphical abstract: TEM of Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite and the discharge curves of pure Co{sub 3}O{sub 4}, pure Co{sub 2}SnO{sub 4} and Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite. - Highlights: • Novel Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite has been prepared by simple co-precipitation method. • Small spherical nanocrystals adhering to the surface of large polyhedral particles. • Formation mechanism is relate to solubility of Sn(OH){sub 6}{sup 2−} in high concentration OH{sup −} . • The composite shows better electrochemical performance than Co{sub 2}SnO{sub 4} and Co{sub 3}O{sub 4} - Abstract: A novel dispersed structure Co{sub 2}SnO{sub 4}/Co{submore » 3}O{sub 4} composite has been successfully synthesized by a conventional co-precipitation method with certain amount of NaOH concentration. The obtained composite exhibits dispersed structure with small spherical nanocrystals adhering to the surface of large polyhedral particles, which has been studied as an anode material in lithium-ion battery. Galvanostatic charge–discharge and cyclic voltammetry has been conducted to measure the electrochemical properties of the material. The results show that Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite demonstrates good reversible capacity of 702.5 mA h g{sup −1} after 50 cycles at a current density of 100 mA h g{sup −1}, much better than that of pure Co{sub 3}O{sub 4} (375.1 mA h g{sup −1}) and pure Co{sub 2}SnO{sub 4} (194.1 mA h g{sup −1}). This material also presents improved rate performance with capacity retention of 71.1% when the current ranges from 100 mA g{sup −1} to 1000 mA g{sup −1}. The excellent electrochemical performance of the as-prepared dispersed structure Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite could be attributed to the good dispersibility of nanoparticles which can effectively alleviate the volume expansion and improve the conductivity, thus enhance the cycling stability.« less
  • Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared bymore » sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.« less
  • Mesophase pitch (MP)/exfoliated graphite nanoplatelets (GNPs) nanocomposite has been prepared by an efficient method with an initiation of graphite intercalation compounds (GIC). X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy and scanning electron microscopy analysis techniques are used to characterize the samples. It is observed that GIC has exfoliated completely into GNPs during the formation of MP/GNPs nanocomposite and the GNPs are distributed uniformly in MP matrix, which represent a conductive path for a movement of electrons throughout the composites. Electrochemical tests demonstrate that the carbonized MP/GNPs nanocomposite displays higher capacity and better cycle performance in comparison with the puremore » carbonized MP. It is concluded that such a large improvement of electrochemical performance within the nanocomposite may in general be related to the enhanced electronic conductivity, which is achieved by good dispersion of GNPs within MP matrix and formation of a 3D network of GNPs. - Graphical abstract: Uniform mesophase pitch/exfoliated graphite nanoplatelets nanocomposite has been efficiently fabricated with an initiation of graphite intercalation compounds. The as-prepared composite electrode exhibited high electrochemical performance for Li-ion batteries.« less
  • Graphical abstract: Co{sub 3}O{sub 4}/MWCNT hybrids were synthesized via strong ultra-sonication assisted shaking processes. The resultant samples as anode electrode display enhanced cycling performance and rate capability compared with pure Co{sub 3}O{sub 4} particle. - Highlights: • Co{sub 3}O{sub 4}/MWCNT hybrids were synthesized via ultra-sonication assisted shaking process. • The resulting Co{sub 3}O{sub 4} nanoparticles are highly dispersed onto MWCNT network backbone. • Co{sub 3}O{sub 4}/MWCNT hybrid displays highly enhanced lithium storage properties. • The present synthetic approach is facile, controllable, and scalable. - Abstract: In this report, Co{sub 3}O{sub 4}/multiple-wall carbon nanotube (MWCNT) hybrid materials were synthesized via strongmore » ultrasonication-assisted shaking and magnetic stirring processes. The prepared samples were well characterized by utilizing powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy techniques. Results indicated that the resulting Co{sub 3}O{sub 4} nanoparticles were highly dispersed in the MWCNT network backbone and further form Co{sub 3}O{sub 4}/MWCNT hybrid materials. The obtained Co{sub 3}O{sub 4}/MWCNT hybrids can be employed as anode electrode in Lithium-ion batteries and deliver as high as discharge capacity of 1250 mA h g{sup −1} at a current density of 0.2 C, additionally, 81% of the discharge capacity for sample 2 with 20 wt.% MWCNT loading could be retained after 70 cycles, which could be associated with the specific hybrid structure of the electrode as well as the addition of MWCNT. Most importantly, the present synthetic approach is facile, controllable, and scalable, which allowing it more easily adapted to prepare other hybrid materials with specific architectures.« less