skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversal bending fatigue testing

Abstract

Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

Inventors:
; ;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1160280
Patent Number(s):
8,863,585
Application Number:
13/396,413
Assignee:
UT-Battelle, LLC (Oak Ridge, TN) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Feb 14
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Wang, Jy-An John, Wang, Hong, and Tan, Ting. Reversal bending fatigue testing. United States: N. p., 2014. Web.
Wang, Jy-An John, Wang, Hong, & Tan, Ting. Reversal bending fatigue testing. United States.
Wang, Jy-An John, Wang, Hong, and Tan, Ting. Tue . "Reversal bending fatigue testing". United States. doi:. https://www.osti.gov/servlets/purl/1160280.
@article{osti_1160280,
title = {Reversal bending fatigue testing},
author = {Wang, Jy-An John and Wang, Hong and Tan, Ting},
abstractNote = {Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Oct 21 00:00:00 EDT 2014},
month = {Tue Oct 21 00:00:00 EDT 2014}
}

Patent:

Save / Share:
  • Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessmentmore » of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other hand, the purchase of universal testing machine or Bose dual LM2 TB was completed and the testing system was delivered to ORNL in August 2012. The preliminary confirmation of the system and on-site training were given by Bose field engineer and regional manager on 8/1-8/2/2012. The calibration of Bose testing system has been performed by ORNL because the integration of ORNL setup into the Bose TestBench occurred after the installation. Major challenge with this process arose from two aspects: 1) the load control involves two load cells, and 2) U-frame setup itself is a non-standard specimen. ORNL has been able to implement the load control through Cycle Indirect along with pinning the U-frame setup. Two meetings with ORNL hot-cell group (November 2012 and January 2013) were held to discuss the potential issues with both epoxy mounting of rigid sleeve and U-frame setup. Many suggestions were provided to make the procedure friendlier to the manipulator in hot cell. Addressing of these suggestions resulted in another cycle of modifications of both vise mold and setup. The initial meeting with ORNL I&C group occurred in November 2012 with regard to the Bose cable modification and design of central panel to integrate the cables and wires. The first round of cable modification and central panel fabrication was completed in February 2012. The testing with the modified cables exhibited substantial noises and the testing system was not shown to be stable. It was believed the cross talk was responsible to the noise, and a central panel with a better grounding and shielding was highly recommended. The central panel has been re-designed and fabricated in March 2013. In the subsequent period, the ORNL made substantial effort to debug the noises with the load cell channel, and to resolve the noises and nonlinearity with RDP LVDTs related to the integration of RDP LVDTs to Bose system. At the same time, ORNL has completed the verification tests of Bose test system, including cycle tests under reversal bending in load control, bending tests under monotonic load, and cycle tests under reversal bending in load control on MTS machine to verify the results of Bose machine. These results are shown to be consistent under equivalent loading conditions, especially for the cycle tests. Rad hardened LVDTs will be incorporated into the Bose system once received, and 10 Hz tests will be completed in the next step. The schedule for the final check of the Bose system is being finalized before the system delivered to the hot cell.« less
  • The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wiresmore » in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.« less
  • The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimenmore » is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.« less
  • A testing machine is described for multi-axis fatigue testing of a component having inner and outer elements subject to linear and rotational forces about different axes comprising a base, first, second and third hydraulic actuators secured to the base, hydraulic pressure means and control means coupled to the actuators for controlled operation of the actuators, gimbal means comprising first and second gimbals mounted on the base and interconnected for rotation about mutually perpendicular axes, the first gimbal having means for attachment to one of the elements, means for substantially independently coupling the first and second actuators to the first andmore » second gimbals respectively so that each actuator effects rocking movement of one gimbal without inputting torque about the axis of the other gimbal, and means for attaching the third actuator to the other of the elements, whereby the three actuators independently and controllably apply loads to the component about three axes of motion.« less
  • A method for testing shell materials for fatigue crack resistance is proposed. A stressed state typically occurring in shells is simulated on a specimen with a surface notch by subjecting it to biaxial surface tension. The time of fatigue crack generation or the crack propagation rate is used to evaluate the crack resistance of a material. Cross-shaped test specimens cut out of a real shell had a size and a loading scheme that made it possible to vary the biaxial stress ratio over the range of 0.5 {<=} {lambda} {<=} 1.