skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1159299
Report Number(s):
IS-J 8389
Journal ID: ISSN 0167-577X
DOE Contract Number:
DE-AC02-07CH11358
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Letters; Journal Volume: 129
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Sadat, M E, Patel, Ronak, Bud׳ko, Sergey L, Ewing, Rodney C, Zhang, Jiaming, Xu, Hong, Mast, David B, and Shi, Donglu. Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites. United States: N. p., 2014. Web. doi:10.1016/j.matlet.2014.05.001.
Sadat, M E, Patel, Ronak, Bud׳ko, Sergey L, Ewing, Rodney C, Zhang, Jiaming, Xu, Hong, Mast, David B, & Shi, Donglu. Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites. United States. doi:10.1016/j.matlet.2014.05.001.
Sadat, M E, Patel, Ronak, Bud׳ko, Sergey L, Ewing, Rodney C, Zhang, Jiaming, Xu, Hong, Mast, David B, and Shi, Donglu. Fri . "Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites". United States. doi:10.1016/j.matlet.2014.05.001.
@article{osti_1159299,
title = {Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites},
author = {Sadat, M E and Patel, Ronak and Bud׳ko, Sergey L and Ewing, Rodney C and Zhang, Jiaming and Xu, Hong and Mast, David B and Shi, Donglu},
abstractNote = {},
doi = {10.1016/j.matlet.2014.05.001},
journal = {Materials Letters},
number = ,
volume = 129,
place = {United States},
year = {Fri Aug 01 00:00:00 EDT 2014},
month = {Fri Aug 01 00:00:00 EDT 2014}
}
  • In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less
  • Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the conventional (single or colloidal) dye molecules and quantum dots. Here, in this paper, we verify that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at a picosecond timescale. Our streak-camera lifetime measurement and interacting lattice–dipole calculation reveal that the metal-mediated dipole–dipole interaction shortens the fluorescent lifetime to about one-halfmore » and increases the energy dissipation rate by 10 times that expected from the noninteracting single-dipole picture. In conclusion, our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a unique direction for developing fast and efficient optoelectronic devices.« less
    Cited by 1
  • We present a systematic and detailed near edge X-ray absorption fine structure (NEXAFS) experimental investigation of the electronic structure and chemistry of iron-based metal oxide nanostructured (FeMONS) materials including BiFeO3, Bi2Fe4O9, a-Fe2O3, ?-Fe2O3, and Fe/Fe3O4. Correlations of the electronic structure and structural chemistry of these intriguing nanomaterials are presented, ranging from the nano to the bulk scale. In this work, variations in the shape, position, and intensity of the O K-edge and Fe L-edge NEXAFS spectra have been analyzed in terms of electronic structure and surface chemistry of the FeMONS materials as compared with that of the bulk. We hypothesizemore » that surface imperfection and surface strain anisotropies in nanoparticles induce distortion and site inequivalency of the oxygen Oh sites around the Fe ion located close to the surface, resulting in an increase in the degree of multiplicity as well as in nonstoichiometric effects in FeMONS materials.« less
  • SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 ?C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamicmore » mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.« less
  • Highlights: Black-Right-Pointing-Pointer iA{beta}5p shows a significant tendency to deeply penetrates the hydrophobic core of lipid membrane. Black-Right-Pointing-Pointer A{beta}(25-35) locates in the external region of the membrane causing a re-positioning of CHOL. Black-Right-Pointing-Pointer iA{beta}5p withholds cholesterol in the inner hydrophobic core of the lipid membrane. Black-Right-Pointing-Pointer iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane. -- Abstract: Alzheimer's disease is characterized by the deposition of aggregates of the {beta}-amyloid peptide (A{beta}) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic {beta}-sheet breaker peptides, which are capable of binding A{beta} but unable to become part ofmore » a {beta}-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the A{beta} aggregation; consequently, it is strategic to investigate the interplay between {beta}-sheet breaker peptides and A{beta} in the presence of lipid bilayers. In this work, we focused on the effect of the {beta}-sheet breaker peptide acetyl-LPFFD-amide, iA{beta}5p, on the interaction of the A{beta}(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iA{beta}5p influences the A{beta}(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iA{beta}5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate A{beta}(25-35). As a consequence, iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane, which is the first step of the {beta}-amyloid aggregation process.« less