skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Progress Report An Interactive Multi-Model for Consensus on Climate Change - a proposal to the Department of Energy


final report

Publication Date:
Research Org.:
Joseph Tribbia/UCAR
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Country of Publication:
United States

Citation Formats

Tribbia, Joseph. Final Progress Report An Interactive Multi-Model for Consensus on Climate Change - a proposal to the Department of Energy. United States: N. p., 2015. Web.
Tribbia, Joseph. Final Progress Report An Interactive Multi-Model for Consensus on Climate Change - a proposal to the Department of Energy. United States.
Tribbia, Joseph. 2015. "Final Progress Report An Interactive Multi-Model for Consensus on Climate Change - a proposal to the Department of Energy". United States. doi:.
title = {Final Progress Report An Interactive Multi-Model for Consensus on Climate Change - a proposal to the Department of Energy},
author = {Tribbia, Joseph},
abstractNote = {final report},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 2
  • This project purports to develop a new scheme for forming consensus among alternative climate models, that give widely divergent projections as to the details of climate change, that is more intelligent than simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under development effectively allows models to assimilate data from one another in run time with weights that are chosen in an adaptive training phase using 20th century data, so that the models synchronize with one another as well as with reality. An alternate approach that is being explored in parallel is the automatedmore » combination of equations from different models in an expert-system-like framework.« less
  • The project takes a hierarchical approach. The supermodeling scheme was first studied exhaustively with simple systems of ordinary differential equations. Results were described in detail in the previous report. The principal findings were that 1) for highly non-linear systems, such as Lorenz-63, including systems which describe phenomena on very different (atmosphere/ocean) times scales, supermodeling is far superior to any form of output-averaging; 2) negative coefficients can be used to advantage in situations where all models err in the same way, but to different degrees; 3) an interesting variant of supermodeling, “weighted supermodeling”, is the limiting case where inter-model nudging coefficientsmore » in the originally conceived “connected supermodel” become infinite, but with fixed ratios, corresponding to a direct combination of the tendencies that appear in corresponding equations for the alternative models; 4) noise is useful for avoiding local optima in training the inter-model coefficients in the supermodel. The supermodeling scheme was then investigated with simple quasigeostrophic (QG) models. As described in the previous report, it was found that QG models on a sphere can be coupled most efficaciously by working in a basis which captures the most variance, rather than the most instability, a somewhat unexpected result that still deserves scrutiny in a broader context. Further studies (since the last report) with QG channel models addressed the central question of when supermodeling is superior to output averaging in situations where nonlinearites are less extreme than with the ODEs initially studied. It was found that for realistic variations in a parameter in the QG model, output averaging is sufficient to capture all but the most subtle quantitative and qualitative behavior. Supermodeling helps when qualitative differences between the models result from unrealistically large parameter differences, or when very detailed spatial structure of the modes of variability are of interest. Therefore, the scheme may still be useful in the case of full climate models with qualitatively different parametrization schemes. A supermodel was constructed from the intermediate-complexity SPEEDO model, a primitive equation model with ocean and land. Versions defined by different parameter choices, in a realistic range, were connected and the coefficients trained. Some improvement was found as compared to output averaging. The learning algorithm used thus far gives sub-optimal, but still useful results when the CO 2 level and other parameters are varied. Spatial structure remains to be studied. The first use of supermodeling with full climate models has been with variants of the ECHAM model that use different convection schemes. As yet the models are only connected at the ocean-atmosphere interface, where weighted combinations of fluxes from the two atmospheres are passed to a common ocean, and the weights adapted during a training period. The supermodel was surprisingly successful at avoiding unrealistic features such as the double-ITCZ (Intertropical Convergence Zone), a problem that arises in both of the two models run separately. The supermodels constructed thus far have not identified dynamical regime shifts in future climate. Thus the planned connection with the work of Tsonis on the relationship between regime shifts and synchronization/de-synchronization among the major climate modes (see U. Wisconsin report) has not yet been made. However the network analysis of the climate system, in observations and models, that was done in conjunction with that study, shows that models differ strongly from one another and from observations in regard to the dynamical structure described by correlation networks [Steinhaeuser and Tsonis 2013], providing a further justification for supermodeling. Toward a general software framework for supermodeling, three versions of CAM (the Community Atmosphere Model) at NCAR were configured for inter-model nudging using the DART (Data Assimilation Research Testbed) capability to stop and re-start models in synchrony. It was clearly established that the inter-model nudging adds almost no computational burden to the runs, but there appears to be a problem with the re-initialization software that is still being debugged. Publications: Several papers were published on the basic idea of the interactive multi-model (supermodel) including demonstrations with low-order ODEs. The last of these, a semi-philosophical review paper on the relevance of synchronization generally, encountered considerable resistance but was finally published in Entropy [Duane 2015]. A paper on the ECHAM/COSMOS supermodel, containing the most promising results so far [Shen et al. 2015] is presently under review.« less
  • This report covers work on grant DE-FG02-86ER60485 and consists of two parts: (1) progress for the period 12/1/92--5/31/93 and (2) the work plan for the remaining period 6/1/93--11/30/93. The project includes four tasks, two of which are addressed in the first project year: ``Model Interface`` and ``Climate Sensitivity.``
  • In the recent IPCC report, the role of tropospheric aerosols, stratospheric aerosols, and natural solar variability have also been identified as having sizable effects on climate, both by direct perturbation of the radiative balance and indirectly by changing ozone. Although the effect of changing CO{sub 2} is by far the dominant factor on a century time scale, the effects from the other identified factors are important on a decade time scale. It is important to understand the mechanisms that relate these changes to climatic responses. Developing appropriate numerical models with the capability to simulate these mechanisms will enable one tomore » correctly interpret the observed climate changes that have occurred to data, as well as predict future changes in climate. It is presently impractical to run comprehensive 3-D general circulation model simulations of the interactions between atmospheric chemistry and the rest of the climate system on time scales of decades to centuries. Thus, 2-D models and other lower resolution models play an essential role in understanding the complex interactions of the integrated climate system.« less
  • The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulationsmore » while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. The results of the successful SGMIP multi-model ensemble simulations of the U.S. climate are available at the SGMIP web site ( and through the link to the WMO/WCRP/WGNE web site: Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.« less