skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

Abstract

The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

Inventors:
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1150742
Patent Number(s):
8,806,954
Application Number:
13/297,333
Assignee:
U.S. Department of Energy (Washington, DC) IDO
DOE Contract Number:
AC07-05ID14517
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

HUbbell, Joel M. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential. United States: N. p., 2014. Web.
HUbbell, Joel M. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential. United States.
HUbbell, Joel M. Tue . "Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential". United States. doi:. https://www.osti.gov/servlets/purl/1150742.
@article{osti_1150742,
title = {Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential},
author = {HUbbell, Joel M.},
abstractNote = {The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Aug 19 00:00:00 EDT 2014},
month = {Tue Aug 19 00:00:00 EDT 2014}
}

Patent:

Save / Share:
  • A device is described for geophysical prospecting of ore deposits, wherein the supply circuit is made up of a direct-current source provided with apparatus for changing current intensity, a main current-carrying electrode having electrical contact with an ore body, and an auxiliary current-carrying electrode electrically connected with the medium enclosing said ore body. Connected in said supply circuit at the main current carrying electrode is a current intensity detector connected whereto is a series circuit made up of a compensating voltage generator, a summing unit and a unit for measuring the potentials of electrochemical reactions on the surface of themore » ore body. A recording unit is connected to the unit for setting values of the potentials of electrochemical reactions and to record in the form of polarization curves the relationships between the set potentials of electrochemical reactions on the surface of the ore body and the currents flowing through the surface of that body. (DDA)« less
  • An earthen material hydraulic conductivity determining apparatus includes: (a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; (b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; (c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and (d) a pressure sensor in fluid communication with the membranemore » rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed. 15 figs.« less
  • An earthen material hydraulic conductivity determining apparatus includes, a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and d) a pressure sensor in fluid communication with the membranemore » rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed.« less
  • Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtainedmore » for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.« less
  • This patent describes a process for measuring small amounts, of actinide pollution in fluidic samples by use of solid state track recording devices. It comprises: containing a sample to be tested, containing small amounts of less than 3E-12 Curies per cubic centimeter of actinide pollution, in a sample cell defining an internal chamber and having means for ingress and egress and means for establishing a fluidic sample therein, the sample cell being substantially transparent to thermal neutron radiation and the internal chamber defined therein being configured to constitute a fluidic sample therein as an asymptotic fluid fission source; positioning amore » solid state track recorder within the internal chamber defined by the sample cell, so that the solid state track recorder has a radiation viewing window through an asymptotic thickness of a fluidic sample contained in the sample cell; capturing at least an asymptotic amount of fluidic sample in the sample cell.« less