skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report

Abstract

This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66 (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine andmore » manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to support part molding. 12) Toyota and Magna discussed with PNNL on tool modification for molding the complex part. Toyota sent the CAD files of the complex part to PNNL to build ASMI models of the part for mold filling analysis to provide guidance to tooling and part molding.« less

Authors:
; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1150201
Report Number(s):
PNNL-23499
830403000
DOE Contract Number:
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
Injection molding, long-fiber thermoplastic, carbon fiber, fiber orientation, fiber length distribution, process modeling, predictive modleing

Citation Formats

Nguyen, Ba Nghiep, Sanborn, Scott E., Mathur, Raj N., Sharma, Bhisham, Sangid, Michael D., Wang, Jin, Jin, Xiaoshi, Costa, Franco, Gandhi, Umesh N., Mori, Steven, and Tucker III, Charles L. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report. United States: N. p., 2014. Web. doi:10.2172/1150201.
Nguyen, Ba Nghiep, Sanborn, Scott E., Mathur, Raj N., Sharma, Bhisham, Sangid, Michael D., Wang, Jin, Jin, Xiaoshi, Costa, Franco, Gandhi, Umesh N., Mori, Steven, & Tucker III, Charles L. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report. United States. doi:10.2172/1150201.
Nguyen, Ba Nghiep, Sanborn, Scott E., Mathur, Raj N., Sharma, Bhisham, Sangid, Michael D., Wang, Jin, Jin, Xiaoshi, Costa, Franco, Gandhi, Umesh N., Mori, Steven, and Tucker III, Charles L. Fri . "Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report". United States. doi:10.2172/1150201. https://www.osti.gov/servlets/purl/1150201.
@article{osti_1150201,
title = {Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report},
author = {Nguyen, Ba Nghiep and Sanborn, Scott E. and Mathur, Raj N. and Sharma, Bhisham and Sangid, Michael D. and Wang, Jin and Jin, Xiaoshi and Costa, Franco and Gandhi, Umesh N. and Mori, Steven and Tucker III, Charles L.},
abstractNote = {This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66 (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to support part molding. 12) Toyota and Magna discussed with PNNL on tool modification for molding the complex part. Toyota sent the CAD files of the complex part to PNNL to build ASMI models of the part for mold filling analysis to provide guidance to tooling and part molding.},
doi = {10.2172/1150201},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}

Technical Report:

Save / Share:
  • The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussedmore » to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.« less
  • During the last quarter of FY 2014, the following technical progress has been made toward project milestones: 1) Autodesk, Inc. (Autodesk) has implemented a new fiber length distribution (FLD) model based on an unbreakable length assumption with Reduced Order Modeling (ROM) by the Proper Orthogonal Decomposition (POD) approach in the mid-plane, dual-domain and 3D solvers. 2) Autodesk improved the ASMI 3D solver for fiber orientation prediction using the anisotropic rotary diffusion (ARD) – reduced strain closure (RSC) model. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on numerical simulation of fiber orientation and fibermore » length. 4) PlastiComp, Inc. (PlastiComp) suggested to Purdue University a procedure for fiber separation using an inert-gas atmosphere in the burn-off furnace. 5) Purdue University (Purdue) hosted a face-to-face project review meeting at Purdue University on August 6-7, 2014. 6) Purdue conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP edged-gated, slow-fill 50wt% LCF/PP edge-gated, and slow-fill 50wt% LCF/PP center-gated plaques, and delivered the orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. 7) PNNL conducted ASMI mid-plane analyses for the above PlastiComp plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 8) PNNL planned the project review meeting (August 6-7, 2014) with Purdue. 9) PNNL performed ASMI analyses for the Toyota complex parts with and without ribs, having different wall thicknesses, and using the PlastiComp 50wt% LCF/PP, 50wt% LCF/PA66, 30wt% LCF/PP, and 30wt% LCF/PA66 materials to provide guidance for tool design and modifications needed for molding these parts. 10) Magna Exteriors and Interiors Corp. (Magna) molded plaques from the 50% LCF/PP and 50% LCF/PA66 materials received from Plasticomp in order to extract machine purgings (purge materials) from Magna’s 200-Ton Injection Molding machine targeted to mold the complex part. 11) Toyota and Magna discussed with PNNL tool modification for molding the complex part.« less
  • During the third quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Magna oversaw the tool build and prepared the molding plan for the complex part of Phase II. 2) PlastiComp hosted a visit by Magna and Toyota on April 23rd to finalize the molding scope and schedule. The plan for molding trials including selection of molding parameters for both LFT and D-LFT for the U-shape complex part was established. 3) Toyota shipped the U-shape complex part tool to Magna on May 28th, 2015. 4) Plasticomp provided 30wt% LCF/PP and 30wt% LCF/PA66 compounded pelletsmore » to Magna for molding the complex part. 5) Magna performed preliminary molding trials on June 2nd, 2015 to validate wall thickness, fill profile, tool temperature and shot size requirements for the complex part. 6) Magna performed the first complex part run on June 16th and 17th, 2015 at Magna’s Composite Centre of Excellence in Concord, ON, Canada. Dale Roland of Plasticomp, and Umesh Gandhi of Toyota also attended the molding. 7) Magna discussed and finalized the plan with PNNL and the team for cutting samples from molded parts at selected locations for fiber orientation and length measurements. 8) Magna provided the computer-aided design (CAD) files of the complex parts with and without ribs to PNNL and Autodesk to build the corresponding ASMI models for injection molding simulations. Magna also provided the actual parameters used. 9) Plasticomp’s provided knowledge and experience of molding LCF materials essential to the successful molding of the parts including optimization of fill speed, tool temperatures, and plasticizing conditions for the 30wt% LCF/PP and 30wt% LCF/PA66 materials in both rib and non-rib versions. 10) Magna molded additional parts for evaluation of mechanical property testing including torsional stiffness on June 29th and 30th, 2015 at Magna’s Composite Center of Excellence. 11) Toyota began preparation for the torsion test of the specimens. Preparation of a computer-aided engineering (CAE) model to predict the performance is in progress. 12) Autodesk fixed an error in the implementation of the proper orthogonal decomposition (POD) calculation of fiber length that had caused the ASMI solution to crash and provided an updated build of ASMI containing the fix. 13)Autodesk reviewed and provided feedback for the complex part molding and measurement locations. 14) Autodesk provided support to set up the workflow for ASMI-ABAQUS® analysis, and provided a fix and workaround for a bug in the ASMI-ABAQUS® output command. 15) Autodesk helped build ASMI analysis models for the complex parts with and without ribs. 16) Autodesk worked on improving the orientation prediction accuracy in the shearing layer for 3D meshes based on comparison to measured data of the plaque moldings. 17) PNNL installed a new ASMI version received from Autodesk and performed comparative analyses to assess mid-plane versus 3D fiber length predictions using the full fiber length model and the reduced-order model (ROM) using POD. 18) PNNL presented the project scope, accomplishments, significant results and future plans to DOE and the USCAR Materials Tech Team on June 3rd, 2015. 19) PNNL discussed the cutting of samples from molded parts and finalized a plan with Magna and the team suggesting the sample size, locations and number of samples per location. 20) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, and preliminary analyses of the part with ribs were conducted using the actual molding parameters received from Magna. 21) PNNL worked on a procedure to extract fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS model. This procedure is essential to import ASMI fiber orientation and length to a 3D ABAQUS model of the part allowing future part structural analysis for weight reduction study.« less
  • During the first quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk delivered a new research version of ASMI to PNNL. This version includes the improved 3D fiber orientation solver, and the reduced order model (ROM) for fiber length distribution using the proper orthogonal decomposition (POD) implemented in the mid-plane, dual-domain and 3D solvers. 2) Autodesk coordinated a conference paper with PNNL reporting ASMI mid-plane fiber orientation predictions compared with the measured data for two PlastiComp plaques. This paper was accepted for presentation at the 2015 Society for Plastics Engineers (SPE) ANTEC conference.more » 3) The University of Illinois (Prof. Tucker) assisted team members from Purdue with fiber orientation measurement techniques, including interpretation of off-axis cross sections. 4) The University of Illinois assisted Autodesk team members with software implementation of the POD approach for fiber length modeling, and with fiber orientation modeling. 5) The University of Illinois co-authored in the SPE ANTEC paper, participated with the team in discussions of plaque data and model results, and participated in the definition of go/no-go experiments and data. 6) Purdue University (Purdue) conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP center-gated, fast-fill 50wt% LCF/PA66 edge-gated and fast-fill 50wt% LCF/PA66 center-gated plaques, and delivered the fiber orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. However, the data for the fast-fill 50wt% LCF/PA66 edge-gated plaque exhibited unusual variations and could not be used for the model validation. Purdue will re-measure fiber orientation for this plaque. 7) Based on discussions with the University of Illinois Purdue explained the ambiguity in the measurements of the fiber orientation components. 8) PNNL discussed with team members to establish a go/no-go decision plan for the project and submitted the established plan to DOE. 9) PNNL performed ASMI mid-plane analyses for the fast-fill center-gated 30wt% LCF/PP and 50wt% LCF/PA66 plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 10) Based on discussions with the University of Illinois and Autodesk, PNNL proposed a procedure to adjust fiber orientation data for Location A of the center-gated plaques so that the data can be expressed and interpreted in the flow/cross-flow direction coordinate system. 11) PNNL tested the new ASMI version received from Autodesk, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 12) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corp. (Magna) participated in discussions with team members on the go/no-go plan and the issues related to fiber length measurements. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.« less
  • During the second quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk reviewed 3D fiber orientation distribution (FOD) comparisons and provided support on improving accuracy. 2) Autodesk reviewed fiber length distribution (FLD) data comparisons and provided suggestions, assisted PNNL in FOD and FLD parameter settings optimization, and advised PNNL on appropriate through thickness thermal conductivity for improved frozen layer effect on FOD predictions. Autodesk also participated in project review meetings including preparations and discussions towards passing the go/no-go decision point. 3) Autodesk implemented an improved FOD inlet profile specification method through the partmore » thickness for 3D meshes and provided an updated ASMI research version to PNNL. 4) The University of Illinois (Prof. C.L. Tucker) provided Autodesk with ideas to improve fiber orientation modeling 5) Purdue University re-measured fiber orientation for the fast-fill 50wt% LCF/PA66 edge-gated plaque, and delivered the fiber orientation data for this plaque at the selected locations (named A, B, and C, Figure 1) to PNNL. Purdue also re-measured fiber orientation for locations A on the fast-fill 30wt% LCF/PP and 50wt% LCF/PA66 center-gated plaques, which exhibited anomalous fiber orientation behavior. 6) Purdue University conducted fiber length measurements and delivered the length data to PNNL for the purge materials (slow-fill 30wt% LCF/PP and 30wt% LCF/PA66 purge materials) and PlastiComp plaques selected on the go/no-go list for fiber length model validation (i.e., slow-fill edge-gated 30wt% LCF/PP and 30wt% LCF/PA66 plaques, Locations A, B, and C). 7) PNNL developed a method to recover intact carbon fibers from LCF/PA66 materials. Isolated fibers were shipped to Purdue for length distribution analysis. 8) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber orientation (FO) model validation and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 9) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber length distribution (FLD) model validation and compared the predicted length distributions with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 10) PNNL tested the new ASMI version received from Autodesk in March 2015, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 11) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corporation (Magna) participated in discussions with team members on the go/no-go plan. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.« less