skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compendium of Experimental Cetane Numbers

Abstract

This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methodsmore » for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office
OSTI Identifier:
1150177
Report Number(s):
NREL/TP-5400-61693
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
33 ADVANCED PROPULSION SYSTEMS; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CETANE NUMBER; DIESEL; COMBUSTION; Transportation

Citation Formats

Yanowitz, J., Ratcliff, M. A., McCormick, R. L., Taylor, J. D., and Murphy, M. J. Compendium of Experimental Cetane Numbers. United States: N. p., 2014. Web. doi:10.2172/1150177.
Yanowitz, J., Ratcliff, M. A., McCormick, R. L., Taylor, J. D., & Murphy, M. J. Compendium of Experimental Cetane Numbers. United States. doi:10.2172/1150177.
Yanowitz, J., Ratcliff, M. A., McCormick, R. L., Taylor, J. D., and Murphy, M. J. Fri . "Compendium of Experimental Cetane Numbers". United States. doi:10.2172/1150177. https://www.osti.gov/servlets/purl/1150177.
@article{osti_1150177,
title = {Compendium of Experimental Cetane Numbers},
author = {Yanowitz, J. and Ratcliff, M. A. and McCormick, R. L. and Taylor, J. D. and Murphy, M. J.},
abstractNote = {This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.},
doi = {10.2172/1150177},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 01 00:00:00 EDT 2014},
month = {Fri Aug 01 00:00:00 EDT 2014}
}

Technical Report:

Save / Share:
  • This report is an updated version of the 2014 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single-compound cetane number data found in the scientific literature up until December 2016 as well as a number of previously unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This version of the compendium contains cetane values for 496 pure compounds, including 204 hydrocarbons and 292 oxygenates. 176 individual measurements are new to this version of the compendium, all of them collected using ASTMmore » Method D6890, which utilizes an Ignition Quality Tester (IQT) a type of constant-volume combustion chamber. For many compounds, numerous measurements are included, often collected by different researchers using different methods. The text of this document is unchanged from the 2014 version, except for the numbers of compounds in Section 3.1, the Appendices, Table 1. Primary Cetane Number Data Sources and Table 2. Number of Measurements Included in Compendium. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines. It is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant-volume combustion chamber. Values in the previous compendium derived from octane numbers have been removed and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane number has been expanded, and the data have been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.« less
  • Much of the research on advanced biofuels is devoted to the study of novel chemical pathways for converting nonfood biomass into liquid fuels that can be blended with existing transportation fuels. Many compounds under consideration are not found in the existing fuel supplies. Often, the physical properties needed to assess the viability of a potential biofuel are not available. The only reliable information available may be the molecular structure. Group contribution methods for estimating physical properties from molecular structure have been used for more than 60 years. The most common application is estimation of thermodynamic properties. More recently, group contributionmore » methods have been developed for estimating rate dependent properties including cetane and octane numbers. Often, published group contribution methods are limited in terms of types of function groups and range of applicability. In this study, a new, broadly-applicable group contribution method based on an artificial neural network was developed to estimate cetane number research octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. The new method is more accurate over a greater range molecular weights and structural complexity than existing group contribution methods for estimating cetane and octane numbers.« less
  • This is a compendium of experimental forests, ranges, watersheds, and other outdoor laboratories, formally established by the Forest Service and Agricultural Research Service of the U.S. Department of Agriculture, and the universities in Utah, Idaho, and Montana. The purposes, histories, natural resource bases, data bases, past and current studies, locations, and who to contact for information are given for these areas that represent ecosystems ranging from deserts to cold subalpine forests.
  • Data are presented for all toroid runs which circulated aqueous thorium oxide slurries between August 1954, and October 1956. In addition, a tabulation of the properties of numerous thoria preparatiors is presented. (auth)