skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
Earth Sciences Division
OSTI Identifier:
1150013
Report Number(s):
LBNL-6719E
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS

Citation Formats

Zheng, Liange, Rutqvist, Jonny, Steefel, Carl, Kim, Kunhwi, Chen, Fei, Vilarrasa, Victor, Nakagawa, Seiji, Houseworth, James, and Birkholzer, Jens. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock. United States: N. p., 2014. Web. doi:10.2172/1150013.
Zheng, Liange, Rutqvist, Jonny, Steefel, Carl, Kim, Kunhwi, Chen, Fei, Vilarrasa, Victor, Nakagawa, Seiji, Houseworth, James, & Birkholzer, Jens. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock. United States. doi:10.2172/1150013.
Zheng, Liange, Rutqvist, Jonny, Steefel, Carl, Kim, Kunhwi, Chen, Fei, Vilarrasa, Victor, Nakagawa, Seiji, Houseworth, James, and Birkholzer, Jens. Fri . "Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock". United States. doi:10.2172/1150013. https://www.osti.gov/servlets/purl/1150013.
@article{osti_1150013,
title = {Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock},
author = {Zheng, Liange and Rutqvist, Jonny and Steefel, Carl and Kim, Kunhwi and Chen, Fei and Vilarrasa, Victor and Nakagawa, Seiji and Houseworth, James and Birkholzer, Jens},
abstractNote = {},
doi = {10.2172/1150013},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}

Technical Report:

Save / Share:
  • The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.
  • The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat.more » This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full-Scale Engineered Barrier Experiment Dismantling Project (FEBEX-DP). The data collected in the test after almost two decades of heating and two dismantling events provide a unique opportunity of validating coupled THMC models and enhancing our understanding of coupled THMC process in EBS bentonite. Section 5 presents a planned large in-situ test, “HotBENT,” at Grimsel Test Site, Switzerland. In this test, bentonite backfilled EBS in granite will be heated up to 200 °C, where the most relevant features of future emplacement conditions can be adequately reproduced. Lawrence Berkeley National Laboratory (LBNL) has very actively participated in the project since the very beginning and have conducted scoping calculations in FY17 to facilitate the final design of the experiment. Section 6 presents present LBNL’s activities for modeling gas migration in clay related to Task A of the international DECOVALEX-2019 project. This is an international collaborative activity in which DOE and LBNL gain access to unique laboratory and field data of gas migration that are studied with numerical modeling to better understand the processes, to improve numerical models that could eventually be applied in the performance assessment for nuclear waste disposal in clay host rocks and bentonite backfill. Section 7 summarizes the main research accomplishments for FY17 and proposes future work activities.« less
  • The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective ofmore » this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.« less
  • A bench-scale test program has been performed to evaluate the effect of critical operating variables on sulfur dioxide removal efficiency for two candidate throwaway'' desulfurization processes for treating zinc-ferrite reactor regeneration offgas. These two throwaway'' processes, dual-alkali wet scrubbing and spray dryer desulfurization, generate a gypsum waste sludge environmentally acceptable for disposal. They have seen extensive commercial application in flue gas desulfurization, but have not been evaluated for such high levels of removal efficiency and such high inlet sulfur dioxide concentrations as would be required for this application. 13 figs., 15 tabs.
  • A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates themore » impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.« less