skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High efficiency proportional neutron detector with solid liner internal structures

Abstract

A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

Inventors:
; ;
Publication Date:
Research Org.:
ORNL (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1149999
Patent Number(s):
8,796,634
Application Number:
13/408,343
Assignee:
UT-Battelle, LLC (Oak Ridge, TN) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Kisner, Roger Allen, Holcomb, David Eugene, and Brown, Gilbert M. High efficiency proportional neutron detector with solid liner internal structures. United States: N. p., 2014. Web.
Kisner, Roger Allen, Holcomb, David Eugene, & Brown, Gilbert M. High efficiency proportional neutron detector with solid liner internal structures. United States.
Kisner, Roger Allen, Holcomb, David Eugene, and Brown, Gilbert M. Tue . "High efficiency proportional neutron detector with solid liner internal structures". United States. doi:. https://www.osti.gov/servlets/purl/1149999.
@article{osti_1149999,
title = {High efficiency proportional neutron detector with solid liner internal structures},
author = {Kisner, Roger Allen and Holcomb, David Eugene and Brown, Gilbert M.},
abstractNote = {A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Aug 05 00:00:00 EDT 2014},
month = {Tue Aug 05 00:00:00 EDT 2014}
}

Patent:

Save / Share:
  • Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The openmore » space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.« less
  • Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.
  • This patent application discloses a high-efficiency apparatus for detecting fast neutrons includes an assembly of disks of solid state charged particle detector material, or other appropriate charged particle detecting devices, disposed between adjacent thick (on the order of 1 mm) disks of a fissionable material. The fissionable material must be an isotope that has a sharp increase in the neutron-induced fission cross section at a neutron energy of about 100 keV or greater, i.e., a fast neutron. An array of such assemblies housed in a thermal neutron shielding structure provides a threshold detector for fast neutrons resulting from neutron-induced fissionmore » of the fissionable material.« less
  • An apparatus (200) for detecting slow or thermal neutrons (160) including an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contactmore » pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.« less
  • An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electricalmore » contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.« less