skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Injector with integrated resonator

Abstract

The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

Inventors:
; ; ;
Publication Date:
Research Org.:
NETL (National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1149997
Patent Number(s):
8,789,372
Application Number:
12/499,777
Assignee:
General Electric Company (Schenectady, NY) NETL
DOE Contract Number:
FC26-05NT42643
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Johnson, Thomas Edward, Ziminsky, Willy Steve, York, William David, and Stevenson, Christian Xavier. Injector with integrated resonator. United States: N. p., 2014. Web.
Johnson, Thomas Edward, Ziminsky, Willy Steve, York, William David, & Stevenson, Christian Xavier. Injector with integrated resonator. United States.
Johnson, Thomas Edward, Ziminsky, Willy Steve, York, William David, and Stevenson, Christian Xavier. Tue . "Injector with integrated resonator". United States. doi:. https://www.osti.gov/servlets/purl/1149997.
@article{osti_1149997,
title = {Injector with integrated resonator},
author = {Johnson, Thomas Edward and Ziminsky, Willy Steve and York, William David and Stevenson, Christian Xavier},
abstractNote = {The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 29 00:00:00 EDT 2014},
month = {Tue Jul 29 00:00:00 EDT 2014}
}

Patent:

Save / Share:
  • A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method formore » fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.« less
  • An air blast fuel supply system for a gas turbine engine comprises a floating swirler separated from the fuel injector and means for radially supporting both the swirler and fuel injector for free radial movement with respect to a combustor dome; a fuel atomization lip on the floating swirler is located in spaced overlying relationship to a tangential fuel director to form an annular fuel film at the outlet of the fuel injector and an outer annular air flow directing lip on the floating swirler directs inlet air flow against the fuel film as it leaves the atomization lip. Themore » fuel injector includes a nozzle tube that slips to permit free axial movement of said fuel injector with resepct to the dome and wherein the tangential fuel director maintains the annular fuel film throughout axially shifted positions of said nozzle tube. This allows the fuel nozzle to be inserted through a small opening in the engine case while maintaining the integrated relationship with the swirler attached to the combustor. The fuel atomization lip has an outlet edge thereon and an outer annular air flow directing lip has outlet edge thereon maintained at a constantly fixed dimensional relationship therebetween throughout axial shifted positions of the nozzle tube whereby the fuel break -up point for atomization of fuel and air remains the same with respect to the combustor during engine operation.« less
  • An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.
  • An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface,more » is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.« less
  • Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.