skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mode-synthesizing atomic force microscopy and mode-synthesizing sensing

Abstract

A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

Inventors:
; ;
Publication Date:
Research Org.:
ORNL (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1149602
Patent Number(s):
8,789,211
Application Number:
13/897,857
Assignee:
UT-Battelle, LLC (Oak Ridge, TN); University of Tennessee Research Foundation (Knoxville, TN) ORNL
DOE Contract Number:
AC05-000R22725
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Passain, Ali, Thundat, Thomas George, and Tetard, Laurene. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing. United States: N. p., 2014. Web.
Passain, Ali, Thundat, Thomas George, & Tetard, Laurene. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing. United States.
Passain, Ali, Thundat, Thomas George, and Tetard, Laurene. Tue . "Mode-synthesizing atomic force microscopy and mode-synthesizing sensing". United States. doi:. https://www.osti.gov/servlets/purl/1149602.
@article{osti_1149602,
title = {Mode-synthesizing atomic force microscopy and mode-synthesizing sensing},
author = {Passain, Ali and Thundat, Thomas George and Tetard, Laurene},
abstractNote = {A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 22 00:00:00 EDT 2014},
month = {Tue Jul 22 00:00:00 EDT 2014}
}

Patent:

Save / Share:
  • A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
  • The study of the spatially resolved physical and compositional properties of materials at the nanoscale is increasingly challenging due to the level of complexity of biological specimens such as those of interest in bioenergy production. Mode synthesizing atomic force microscopy (MSAFM) has emerged as a promising metrology tool for such studies. It is shown that, by tuning the mechanical excitation of the probe-sample system, MSAFM can be used to dynamically investigate the multifaceted complexity of plant cells. The results are argued to be of importance both for the characteristics of the invoked synthesized modes and for accessing new features ofmore » the samples. As a specific system to investigate, we present images of Populus, before and after a holopulping treatment, a crucial step in the biomass delignification process.« less
  • This paper reports on advances toward quantitative non-destructive nanoscale subsurface investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy with heterodyne detection, addressing the need to correlate the role of actuation frequencies of the probe f{sub p} and the sample f{sub s} with depth resolution for 3D tomography reconstruction. Here, by developing a simple model and validating the approach experimentally through the study of the nanofabricated calibration depth samples consisting of buried metallic patterns, we demonstrate avenues for quantitative nanoscale subsurface imaging. Our findings enable the reconstruction of the sample depth profile and allow high fidelity resolutionmore » of the buried nanostructures. Non-destructive quantitative nanoscale subsurface imaging offers great promise in the study of the structures and properties of complex systems at the nanoscale.« less
  • An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezomore » element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.« less
  • An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between themore » probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.« less