skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational Analysis of Responses of Micro Electro-Thermal Actuators.

Abstract

Abstract not provided.

Authors:
;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1148168
Report Number(s):
SAND2007-4080C
522590
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the ASME International Mechanical Engineering Congress & Exposition held November 11-15, 2007 in Seattle, WA.
Country of Publication:
United States
Language:
English

Citation Formats

Wong, Chungnin C., and Phinney, Leslie M. Computational Analysis of Responses of Micro Electro-Thermal Actuators.. United States: N. p., 2007. Web.
Wong, Chungnin C., & Phinney, Leslie M. Computational Analysis of Responses of Micro Electro-Thermal Actuators.. United States.
Wong, Chungnin C., and Phinney, Leslie M. Fri . "Computational Analysis of Responses of Micro Electro-Thermal Actuators.". United States. doi:. https://www.osti.gov/servlets/purl/1148168.
@article{osti_1148168,
title = {Computational Analysis of Responses of Micro Electro-Thermal Actuators.},
author = {Wong, Chungnin C. and Phinney, Leslie M.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 2007},
month = {Fri Jun 01 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • This paper reports on significant advances in electrothermal bent beam actuators. Designs for long throw linear and rotary actuators are described. Silicon p++ devices showed 20--30 {mu}m displacements with 150 {micro}N loads at actuation levels of 6--8 V, and 250--300 mW. An electroplated version provided 15 {mu}m displacements at 0.8 V and 450 mW. Inchworm type devices are reported that had linear displacements of 100 {micro}m with 200 {micro}N loads. Refinements in the modeling to account for non-linear thermal expansion coefficients and buckling are also reported.
  • Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films aremore » micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market.« less
  • In many micro-scale fluid dynamics problems, molecular-level processes can control the interfacial energy and viscoelastic properties at a liquid-solid interface. This leads to a flow behavior that is very different from those similar fluid dynamics problems at the macro-scale. Presently, continuum modeling fails to capture this flow behavior. Molecular dynamics simulations have been applied to investigate these complex fluid-wall interactions at the nano-scale. Results show that the influence of the wall crystal lattice orientation on the fluid-wall interactions can be very important. To address those problems involving interactions of multiple length scales, a coupled atomistic-continuum model has been developed andmore » applied to analyze flow in channels with atomically smooth walls. The present coupling strategy uses the molecular dynamics technique to probe the non-equilibrium flow near the channel walls and applies constraints to the fluid particle motion, which is coupled to the continuum flow modeling in the interior region. We have applied this new methodology to investigate Couette flow in micro-channels.« less
  • A computational design and analysis of a microtab based aerodynamic loads control system is presented. The microtab consists of a small tab that emerges from a wing approximately perpendicular to its surface in the vicinity of its trailing edge. Tab deployment on the upper side of the wing causes a decrease in the lift generation whereas deployment on the pressure side causes an increase. The computational methods applied in the development of this concept solve the governing Reynolds-averaged Navier-Stokes equations on structured, overset grids. The application of these methods to simulate the flows over lifting surface including the tabs hasmore » been paramount in the development of these devices. The numerical results demonstrate the effectiveness of the microtab and that it is possible to carry out a sensitivity analysis on the positioning and sizing of the tabs before they are implemented in successfully controlling the aerodynamic loads.« less