skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal cycler

Abstract

A thermalcycler includes a first thermalcycler body section having a first face and a second thermalcycler body section having a second face. A cavity is formed by the first face and the second face. A thermalcycling unit is positioned in the cavity. A heater trace unit is connected to a support section, to the first thermalcycler body section, to the second thermalcycler body section, and to the thermalcycling unit. The first thermalcycler body section and the second thermalcycler body section are positioned together against the support section to enclose the thermalcycling unit and the heater trace unit.

Inventors:
; ; ; ; ;
Publication Date:
Research Org.:
LLNL (Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1144009
Patent Number(s):
8,778,663
Application Number:
11/901,787
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA) LLNL
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Benett, William J., Andreski, John T., Dzenitis, John M., Makarewicz, Anthony J., Hadley, Dean R., and Pannu, Satinderpall S. Thermal cycler. United States: N. p., 2014. Web.
Benett, William J., Andreski, John T., Dzenitis, John M., Makarewicz, Anthony J., Hadley, Dean R., & Pannu, Satinderpall S. Thermal cycler. United States.
Benett, William J., Andreski, John T., Dzenitis, John M., Makarewicz, Anthony J., Hadley, Dean R., and Pannu, Satinderpall S. Tue . "Thermal cycler". United States. doi:. https://www.osti.gov/servlets/purl/1144009.
@article{osti_1144009,
title = {Thermal cycler},
author = {Benett, William J. and Andreski, John T. and Dzenitis, John M. and Makarewicz, Anthony J. and Hadley, Dean R. and Pannu, Satinderpall S.},
abstractNote = {A thermalcycler includes a first thermalcycler body section having a first face and a second thermalcycler body section having a second face. A cavity is formed by the first face and the second face. A thermalcycling unit is positioned in the cavity. A heater trace unit is connected to a support section, to the first thermalcycler body section, to the second thermalcycler body section, and to the thermalcycling unit. The first thermalcycler body section and the second thermalcycler body section are positioned together against the support section to enclose the thermalcycling unit and the heater trace unit.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 15 00:00:00 EDT 2014},
month = {Tue Jul 15 00:00:00 EDT 2014}
}

Patent:

Save / Share:
  • A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluidmore » at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.« less
  • In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, portable, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology such as aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks intomore » contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We further demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system using low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, preliminary results are presented for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.« less
  • Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microlitermore » capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.« less
  • A method and apparatus for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several (more than about 3). A fluid annulus thermallymore » couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k/sub infinity/, and to the thermal capacity per unit volume, (..gamma..c/sub p/)/sub infinity/, by comparison with calculated curves using estimates of K/sub infinity/ and (..gamma..c/sub p/)/sub infinity/ in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.« less
  • A thermal reclaimer apparatus is disclosed for thermally removing from the used foundry sand the organic matter that is present therein. The subject thermal reclaimer apparatus includes chamber means in which the used foundry sand is heated to a predetermined temperature for a preestablished period in order to accomplish the burning away of the organic matter that the used foundry sand contains. The chamber means includes inlet means provided at one end thereof and outlet means provided at the other end thereof. Feed means are cooperatively associated with the pipe means and thereby with the inlet means for feeding themore » used foundry sand through the inlet means into the chamber means. The subject thermal reclaimer apparatus further includes rotating means operative for effecting the rotation of the chamber means as the used foundry sand is being heated therein. The chamber means has cooperatively associated therewith burner means located at the same end thereof as the outlet means. The burner means is operative to effect the heating of the used foundry sand to the desired temperature within the chamber means. Tumbling means are provided inside the chamber means to ensure that the used foundry sand is constantly turned over, i.e., tumbled, and that the lumps therein are broken up as the chamber means rotates. Lastly, the used foundry sand from which the organic matter has been removed leaves the chamber means through the outlet means.« less