skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasmon resonant cavities in vertical nanowire arrays

Abstract

Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

Inventors:
; ; ;
Publication Date:
Research Org.:
LLNL (Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1143668
Patent Number(s):
8,780,439
Application Number:
13/410,226
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA) LLNL
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Bora, Mihail, Bond, Tiziana C., Fasenfest, Benjamin J., and Behymer, Elaine M. Plasmon resonant cavities in vertical nanowire arrays. United States: N. p., 2014. Web.
Bora, Mihail, Bond, Tiziana C., Fasenfest, Benjamin J., & Behymer, Elaine M. Plasmon resonant cavities in vertical nanowire arrays. United States.
Bora, Mihail, Bond, Tiziana C., Fasenfest, Benjamin J., and Behymer, Elaine M. Tue . "Plasmon resonant cavities in vertical nanowire arrays". United States. doi:. https://www.osti.gov/servlets/purl/1143668.
@article{osti_1143668,
title = {Plasmon resonant cavities in vertical nanowire arrays},
author = {Bora, Mihail and Bond, Tiziana C. and Fasenfest, Benjamin J. and Behymer, Elaine M.},
abstractNote = {Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 15 00:00:00 EDT 2014},
month = {Tue Jul 15 00:00:00 EDT 2014}
}

Patent:

Save / Share:

Works referenced in this record:

Advances in surface plasmon resonance biosensor analysis
journal, February 2000


Surface plasmon subwavelength optics
journal, August 2003

  • Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W.
  • Nature, Vol. 424, Issue 6950, p. 824-830
  • DOI: 10.1038/nature01937

Surface plasmons enhance optical transmission through subwavelength holes
journal, September 1998

  • Ghaemi, H. F.; Thio, Tineke; Grupp, D. E.
  • Physical Review B, Vol. 58, Issue 11, p. 6779-6782
  • DOI: 10.1103/PhysRevB.58.6779

Beaming Light from a Subwavelength Aperture
journal, June 2002


Metal cluster enhanced organic solar cells
journal, February 2000

  • Westphalen, M.; Kreibig, U.; Rostalski, J.
  • Solar Energy Materials and Solar Cells, Vol. 61, Issue 1, p. 97-105
  • DOI: 10.1016/S0927-0248(99)00100-2

Optical Constants of the Noble Metals
journal, December 1972