skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biometric Algorithms for 3D Face Recognition.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the IDGA Biometrics for National Security and Defense held February 9-11, 2009 in Washington, DC.
Country of Publication:
United States

Citation Formats

Koch, Mark William. Biometric Algorithms for 3D Face Recognition.. United States: N. p., 2008. Web.
Koch, Mark William. Biometric Algorithms for 3D Face Recognition.. United States.
Koch, Mark William. 2008. "Biometric Algorithms for 3D Face Recognition.". United States. doi:.
title = {Biometric Algorithms for 3D Face Recognition.},
author = {Koch, Mark William},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2008,
month =

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Iris recognition has been proven to be an accurate and reliable biometric. However, the recognition of non-ideal iris images such as off angle images is still an unsolved problem. We propose a new biometric targeted eye model and a method to reconstruct the off-axis eye to its frontal view allowing for recognition using existing methods and algorithms. This allows for existing enterprise level algorithms and approaches to be largely unmodified by using our work as a pre-processor to improve performance. In addition, we describe the `Limbus effect' and its importance for an accurate segmentation of off-axis irides. Our method usesmore » an anatomically accurate human eye model and ray-tracing techniques to compute a transformation function, which reconstructs the iris to its frontal, non-refracted state. Then, the same eye model is used to render a frontal view of the reconstructed iris. The proposed method is fully described and results from synthetic data are shown to establish an upper limit on performance improvement and establish the importance of the proposed approach over traditional linear elliptical unwrapping methods. Our results with synthetic data demonstrate the ability to perform an accurate iris recognition with an image taken as much as 70 degrees off-axis.« less
  • Iris recognition is among the highest accuracy biometrics. However, its accuracy relies on controlled high quality capture data and is negatively affected by several factors such as angle, occlusion, and dilation. Non-ideal iris recognition is a new research focus in biometrics. In this paper, we present a gaze estimation method designed for use in an off-angle iris recognition framework based on the ANONYMIZED biometric eye model. Gaze estimation is an important prerequisite step to correct an off-angle iris images. To achieve the accurate frontal reconstruction of an off-angle iris image, we first need to estimate the eye gaze direction frommore » elliptical features of an iris image. Typically additional information such as well-controlled light sources, head mounted equipment, and multiple cameras are not available. Our approach utilizes only the iris and pupil boundary segmentation allowing it to be applicable to all iris capture hardware. We compare the boundaries with a look-up-table generated by using our biologically inspired biometric eye model and find the closest feature point in the look-up-table to estimate the gaze. Based on the results from real images, the proposed method shows effectiveness in gaze estimation accuracy for our biometric eye model with an average error of approximately 3.5 degrees over a 50 degree range.« less
  • The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that themore » system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.« less
  • A face detection system that automatically locates faces in gray-level images is described. Also described is a system which matches a given face image with faces in a database. Face detection in an Image is performed by template matching using templates derived from a selected set of normalized faces. Instead of using original gray level images, vertical gradient images were calculated and used to make the system more robust against variations in lighting conditions and skin color. Faces of different sizes are detected by processing the image at several scales. Further, a coarse-to-fine strategy is used to speed up themore » processing, and a combination of whole face and face component templates are used to ensure low false detection rates. The input to the face recognition system is a normalized vertical gradient image of a face, which is compared against a database using a set of pretrained feedforward neural networks with a winner-take-all fuser. The training is performed by using an adaptation of the backpropagation algorithm. This system has been developed and tested using images from the FERET database and a set of images obtained from Rowley, et al and Sung and Poggio.« less
  • A novel, template-based method for face recognition is presented. The goals of the proposed method are to integrate multiple observations for improved robustness and to provide auxiliary confidence data for subsequent use in an automated video surveillance system. The proposed framework consists of a parallel system of classifiers, referred to as observers, where each observer is trained on one face region. The observer outputs are combined to yield the final recognition result. Three of the four confounding factors--expression, illumination, and decoration--are specifically addressed in this paper. The extension of the proposed approach to address the fourth confounding factor--pose--is straightforward andmore » well supported in previous work. A further contribution of the proposed approach is the computation of a revealing confidence measure. This confidence measure will aid the subsequent application of the proposed method to video surveillance scenarios. Results are reported for a database comprising 676 images of 160 subjects under a variety of challenging circumstances. These results indicate significant performance improvements over previous methods and demonstrate the usefulness of the confidence data.« less