skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor [beta/delta] (FABP5-PPAR[beta/delta]) Signaling Pathway

Authors:
; ; ; ;  [1];  [2];  [2]
  1. (Emory-MED)
  2. (
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
UNIVERSITYNIH
OSTI Identifier:
1140045
Resource Type:
Journal Article
Resource Relation:
Journal Name: J. Biol. Chem.; Journal Volume: 289; Journal Issue: (21) ; 05, 2014
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Armstrong, Eric H., Goswami, Devrishi, Griffin, Patrick R., Noy, Noa, Ortlund, Eric A., Scripps), and Case Western U.-Med). Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor [beta/delta] (FABP5-PPAR[beta/delta]) Signaling Pathway. United States: N. p., 2014. Web. doi:10.1074/jbc.M113.514646.
Armstrong, Eric H., Goswami, Devrishi, Griffin, Patrick R., Noy, Noa, Ortlund, Eric A., Scripps), & Case Western U.-Med). Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor [beta/delta] (FABP5-PPAR[beta/delta]) Signaling Pathway. United States. doi:10.1074/jbc.M113.514646.
Armstrong, Eric H., Goswami, Devrishi, Griffin, Patrick R., Noy, Noa, Ortlund, Eric A., Scripps), and Case Western U.-Med). Thu . "Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor [beta/delta] (FABP5-PPAR[beta/delta]) Signaling Pathway". United States. doi:10.1074/jbc.M113.514646.
@article{osti_1140045,
title = {Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor [beta/delta] (FABP5-PPAR[beta/delta]) Signaling Pathway},
author = {Armstrong, Eric H. and Goswami, Devrishi and Griffin, Patrick R. and Noy, Noa and Ortlund, Eric A. and Scripps) and Case Western U.-Med)},
abstractNote = {},
doi = {10.1074/jbc.M113.514646},
journal = {J. Biol. Chem.},
number = (21) ; 05, 2014,
volume = 289,
place = {United States},
year = {Thu Aug 21 00:00:00 EDT 2014},
month = {Thu Aug 21 00:00:00 EDT 2014}
}
  • The expression patterns of PPAR{beta}/{delta} have been described, but the majority of these data are based on mRNA data. To date, there are no reports that have quantitatively examined the expression of PPAR{beta}/{delta} protein in mouse tissues. In the present study, a highly specific PPAR{beta}/{delta} antibody was developed, characterized, and used to examine tissue expression patterns of PPAR{beta}/{delta}. As compared to commercially available anti-PPAR{beta}/{delta} antibodies, one of six polyclonal anti-PPAR{beta}/{delta} antibodies developed was significantly more effective for immunoprecipitation of in vitro-translated PPAR{beta}/{delta}. This antibody was used for quantitative Western blot analysis using radioactive detection methods. Expression of PPAR{beta}/{delta} was highestmore » in colon, small intestine, liver, and keratinocytes as compared to other tissues including heart, spleen, skeletal muscle, lung, brain, and thymus. Interestingly, PPAR{beta}/{delta} expression was localized in the nucleus and RXR{alpha} can be co-immunoprecipitated with nuclear PPAR{beta}/{delta}. Results from these studies demonstrate that PPAR{beta}/{delta} expression is highest in intestinal epithelium, liver, and keratinocytes, consistent with significant biological roles in these tissues.« less
  • The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show thatmore » coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.« less
  • Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation ofmore » peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO{sub 2} and acid soluble metabolites in enterocytes. Moreover, bezafibrate treatment suppressed postprandial lipidemia after oral administration of olive oil to the mice. These findings indicate that PPAR{alpha} activation suppresses postprandial lipidemia through enhancement of fatty acid oxidation in enterocytes, suggesting that intestinal lipid metabolism regulated by PPAR{alpha} activity is a novel target of PPAR{alpha} agonist for decreasing circulating levels of lipids under postprandial conditions.« less
  • Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation inmore » a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.« less
  • Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediatedmore » transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.« less