skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stress in titania nanoparticles: An atomistic study

Journal Article · · Physical Chemistry Chemical Physics. PCCP, 16(20):9441-9447
DOI:https://doi.org/10.1039/c3cp54357a· OSTI ID:1132192

Stress engineering is becoming an increasingly important method for controlling electronic, optical, and magnetic properties of nanostructures, although the concept of stress is poorly defined at the nanoscale. We outline a methodology for computing bulk and surface stress in nanoparticles using atomistic simulation. The method is applicable to ionic and non- ionic materials alike and may be extended to other nanostructures. We apply it to spherical anatase nanoparticles ranging from 2 to 6 nm in diameter and obtain a surface stress of 0.89 N/m, in agreement with experimental measurements. Based on the extent that stress inhomogeneities at the surface are transmitted into the bulk, two characteristic length-scales are identified: below 3 nm bulk and surface regions cannot be defined and the available analytic theories for stress are not applicable, and above about 5 nm the stress becomes well-described by the theoretical Young-Laplace equation. The effect of a net surface charge on the bulk stress is also investigated. It is found that moderate surface charges can induce significant bulk stresses, on the order of 100 MPa, in nanoparticles within this size range.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1132192
Report Number(s):
PNNL-SA-98377; KC0203020
Journal Information:
Physical Chemistry Chemical Physics. PCCP, 16(20):9441-9447, Journal Name: Physical Chemistry Chemical Physics. PCCP, 16(20):9441-9447
Country of Publication:
United States
Language:
English

Similar Records

Atomistic Simulations of the Elastic Compression of Platinum Nanoparticles
Journal Article · Mon Oct 03 00:00:00 EDT 2022 · Nanoscale Research Letters (Online) · OSTI ID:1132192

Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles
Journal Article · Thu Mar 21 00:00:00 EDT 2019 · Nanoscale · OSTI ID:1132192

A Shell Model for Atomistic Simulation of Charge Transfer in Titania
Journal Article · Thu May 22 00:00:00 EDT 2008 · Journal of Physical Chemistry C, 112(20):7678-7688 · OSTI ID:1132192