skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High surface area, electrically conductive nanocarbon-supported metal oxide

Abstract

A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

Inventors:
; ; ; ; ; ;
Publication Date:
Research Org.:
LLNL (Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1127080
Patent Number(s):
8,664,143
Application Number:
13/281,185
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA) LLNL
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Worsley, Marcus A, Han, Thomas Yong-Jin, Kuntz, Joshua D, Cervanted, Octavio, Gash, Alexander E, Baumann, Theodore F, and Satcher, Jr., Joe H. High surface area, electrically conductive nanocarbon-supported metal oxide. United States: N. p., 2014. Web.
Worsley, Marcus A, Han, Thomas Yong-Jin, Kuntz, Joshua D, Cervanted, Octavio, Gash, Alexander E, Baumann, Theodore F, & Satcher, Jr., Joe H. High surface area, electrically conductive nanocarbon-supported metal oxide. United States.
Worsley, Marcus A, Han, Thomas Yong-Jin, Kuntz, Joshua D, Cervanted, Octavio, Gash, Alexander E, Baumann, Theodore F, and Satcher, Jr., Joe H. Tue . "High surface area, electrically conductive nanocarbon-supported metal oxide". United States. doi:. https://www.osti.gov/servlets/purl/1127080.
@article{osti_1127080,
title = {High surface area, electrically conductive nanocarbon-supported metal oxide},
author = {Worsley, Marcus A and Han, Thomas Yong-Jin and Kuntz, Joshua D and Cervanted, Octavio and Gash, Alexander E and Baumann, Theodore F and Satcher, Jr., Joe H},
abstractNote = {A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 04 00:00:00 EST 2014},
month = {Tue Mar 04 00:00:00 EST 2014}
}

Patent:

Save / Share:

Works referenced in this record:

Carbon Nanotube Aerogels
journal, March 2007

  • Bryning, M. B.; Milkie, D. E.; Islam, M. F.
  • Advanced Materials, Vol. 19, Issue 5, p. 661-664
  • DOI: 10.1002/adma.200601748

Group 6 metal oxide-carbon aerogels. Their synthesis, characterization and catalytic activity in the skeletal isomerization of 1-butene
journal, July 1999

  • Moreno-Castilla, Carlos; José Maldonado-Hódar, Francisco; Rivera-Utrilla, José
  • Applied Catalysis A: General, Vol. 183, Issue 2, p. 345-356
  • DOI: 10.1016/S0926-860X(99)00068-X

Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles
journal, August 2013


Synthesis and Characterization of Nanocarbon-Supported Titanium Dioxide
journal, January 2009


High surface area carbon nanotube-supported titanium carbonitride aerogels
journal, January 2009

  • Worsley, Marcus A.; Kuntz, Joshua D.; Pauzauskie, Peter J.
  • Journal of Materials Chemistry, Vol. 19, Issue 31, p. 5503-5506
  • DOI: 10.1039/B908284K

Route to high surface area TiO2/C and TiCN/C composites
journal, January 2009

  • Worsley, Marcus A.; Kuntz, Joshua D.; Cervantes, Octavio
  • Journal of Materials Chemistry, Vol. 19, Issue 38, p. 7146-7150
  • DOI: 10.1039/B911994A

Carbon aerogels for electrochemical applications
journal, April 1998


Metal-carbon aerogels as catalysts and catalyst supports
book, January 2000

  • Maldonado-Hòdar, F. J.; Moreno-Castilla, C.; Rivera-Utrilla, J.
  • Studies in Surface Science and Catalysis, Vol. 130, p. 1007-1012
  • DOI: 10.1016/S0167-2991(00)80330-4

Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors
journal, October 2007


Planar fibre reinforced carbon aerogels for application in PEM fuel cells
journal, May 2001


New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources
journal, February 2008

  • Bordjiba, T.; Mohamedi, M.; Dao, L. H.
  • Advanced Materials, Vol. 20, Issue 4, p. 815-819
  • DOI: 10.1002/adma.200701498

Mechanically robust and electrically conductive carbon nanotube foams
journal, February 2009

  • Worsley, Marcus A.; Kucheyev, Sergei O.; Satcher, Joe H.
  • Applied Physics Letters, Vol. 94, Issue 7, Article No. 073115
  • DOI: 10.1063/1.3086293

Depth-sensing indentation of low-density brittle nanoporous solids
journal, July 2009


Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading
journal, October 2009

  • Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.
  • Acta Materialia, Vol. 57, Issue 17, p. 5131-5136
  • DOI: 10.1016/j.actamat.2009.07.012