skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

Abstract

The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-inducedmore » radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [16]
  1. ORNL
  2. University of California, Irvine
  3. Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada
  4. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics
  5. Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment
  6. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing
  7. Hadley Centre, U.K. Met Office
  8. Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
  9. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY
  10. National Center for Atmospheric Research (NCAR)
  11. Meteorological Research Institute, Japan
  12. Princeton University
  13. Max Planck Institute for Meteorology, Hamburg, Germany
  14. Uni Climate, Uni Research
  15. Institute of Numerical Mathematics, Russian Academy of Science, Moscow
  16. China Meteorological Administration (CMA), Beijing
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1126524
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
Journal of Geophysical Research. Biogeosciences
Additional Journal Information:
Journal Volume: 119; Journal Issue: 2; Journal ID: ISSN 2169-8953
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English

Citation Formats

Hoffman, Forrest M, Randerson, James T., Arora, Vivek K., Bao, Qing, Cadule, Patricia, Ji, Duoying, Jones, Chris D., Kawamiya, Michio, Khatiwala, Samar, Lindsay, Keith, Obata, Atsushi, Shevliakova, Elena, Six, Katharina D., Tjiputra, Jerry F., Volodin, Evgeny M., and Wu, Tongwen. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models. United States: N. p., 2014. Web. doi:10.1002/2013JG002381.
Hoffman, Forrest M, Randerson, James T., Arora, Vivek K., Bao, Qing, Cadule, Patricia, Ji, Duoying, Jones, Chris D., Kawamiya, Michio, Khatiwala, Samar, Lindsay, Keith, Obata, Atsushi, Shevliakova, Elena, Six, Katharina D., Tjiputra, Jerry F., Volodin, Evgeny M., & Wu, Tongwen. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models. United States. doi:10.1002/2013JG002381.
Hoffman, Forrest M, Randerson, James T., Arora, Vivek K., Bao, Qing, Cadule, Patricia, Ji, Duoying, Jones, Chris D., Kawamiya, Michio, Khatiwala, Samar, Lindsay, Keith, Obata, Atsushi, Shevliakova, Elena, Six, Katharina D., Tjiputra, Jerry F., Volodin, Evgeny M., and Wu, Tongwen. Wed . "Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models". United States. doi:10.1002/2013JG002381.
@article{osti_1126524,
title = {Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models},
author = {Hoffman, Forrest M and Randerson, James T. and Arora, Vivek K. and Bao, Qing and Cadule, Patricia and Ji, Duoying and Jones, Chris D. and Kawamiya, Michio and Khatiwala, Samar and Lindsay, Keith and Obata, Atsushi and Shevliakova, Elena and Six, Katharina D. and Tjiputra, Jerry F. and Volodin, Evgeny M. and Wu, Tongwen},
abstractNote = {The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.},
doi = {10.1002/2013JG002381},
journal = {Journal of Geophysical Research. Biogeosciences},
issn = {2169-8953},
number = 2,
volume = 119,
place = {United States},
year = {2014},
month = {1}
}

Works referenced in this record:

Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models
journal, September 2013


Monthly, global emissions of carbon dioxide from fossil fuel consumption
journal, January 2011


A synthesis of carbon dioxide emissions from fossil-fuel combustion
journal, January 2012


A parameterization of leaf phenology for the terrestrial ecosystem component of climate models
journal, January 2005


Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases: ALLOWABLE FUTURE CARBON EMISSIONS
journal, March 2011

  • Arora, V. K.; Scinocca, J. F.; Boer, G. J.
  • Geophysical Research Letters, Vol. 38, Issue 5
  • DOI: 10.1029/2010GL046270

Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models
journal, August 2013

  • Arora, Vivek K.; Boer, George J.; Friedlingstein, Pierre
  • Journal of Climate, Vol. 26, Issue 15
  • DOI: 10.1175/JCLI-D-12-00494.1

Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps
journal, January 2012

  • Baccini, A.; Goetz, S. J.; Walker, W. S.
  • Nature Climate Change, Vol. 2, Issue 3
  • DOI: 10.1038/nclimate1354

Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
journal, August 2012

  • Ballantyne, A. P.; Alden, C. B.; Miller, J. B.
  • Nature, Vol. 488, Issue 7409
  • DOI: 10.1038/nature11299

The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2
journal, April 2013


The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate
journal, January 2013

  • Bentsen, M.; Bethke, I.; Debernard, J. B.
  • Geoscientific Model Development, Vol. 6, Issue 3
  • DOI: 10.5194/gmd-6-687-2013

Climate trade-off between black carbon and carbon dioxide emissions
journal, January 2008


Global biogeophysical interactions between forest and climate: FOREST-CLIMATE INTERACTIONS
journal, April 2009

  • Brovkin, Victor; Raddatz, Thomas; Reick, Christian H.
  • Geophysical Research Letters, Vol. 36, Issue 7
  • DOI: 10.1029/2009GL037543

Anthropogenic carbon and ocean pH
journal, September 2003

  • Caldeira, Ken; Wickett, Michael E.
  • Nature, Vol. 425, Issue 6956
  • DOI: 10.1038/425365a

Development and evaluation of an Earth-System model – HadGEM2
journal, January 2011

  • Collins, W. J.; Bellouin, N.; Doutriaux-Boucher, M.
  • Geoscientific Model Development, Vol. 4, Issue 4
  • DOI: 10.5194/gmd-4-1051-2011

Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network
journal, January 1994

  • Conway, Thomas J.; Tans, Pieter P.; Waterman, Lee S.
  • Journal of Geophysical Research, Vol. 99, Issue D11
  • DOI: 10.1029/94JD01951

Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability
journal, February 2013

  • Cox, Peter M.; Pearson, David; Booth, Ben B.
  • Nature, Vol. 494, Issue 7437
  • DOI: 10.1038/nature11882

The Common Land Model
journal, August 2003

  • Dai, Yongjiu; Zeng, Xubin; Dickinson, Robert E.
  • Bulletin of the American Meteorological Society, Vol. 84, Issue 8
  • DOI: 10.1175/BAMS-84-8-1013

A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance
journal, June 2004


Effects of vertical variations of thickness diffusivity in an ocean general circulation model
journal, January 2007


Sensitivity of an Ocean General Circulation Model to a Parameterization of Near-Surface Eddy Fluxes
journal, March 2008

  • Danabasoglu, Gokhan; Ferrari, Raffaele; McWilliams, James C.
  • Journal of Climate, Vol. 21, Issue 6
  • DOI: 10.1175/2007JCLI1508.1

Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
journal, March 2006


Evaluating global ocean carbon models: The importance of realistic physics
journal, September 2004

  • Doney, S. C.; Lindsay, K.; Caldeira, K.
  • Global Biogeochemical Cycles, Vol. 18, Issue 3
  • DOI: 10.1029/2003GB002150

Ocean Acidification: The Other CO 2 Problem
journal, January 2009


Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data
journal, February 2009


Water Mass Exchange in the Southern Ocean in Coupled Climate Models
journal, September 2011

  • Downes, Stephanie M.; Gnanadesikan, Anand; Griffies, Stephen M.
  • Journal of Physical Oceanography, Vol. 41, Issue 9
  • DOI: 10.1175/2011JPO4586.1

Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
journal, February 2013


GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics
journal, October 2012


GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics
journal, April 2013


Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models
journal, January 2002


Natural and anthropogenic changes in atmospheric CO 2 over the last 1000 years from air in Antarctic ice and firn
journal, February 1996

  • Etheridge, D. M.; Steele, L. P.; Langenfelds, R. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D2
  • DOI: 10.1029/95JD03410

A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
journal, June 1980

  • Farquhar, G. D.; von Caemmerer, S.; Berry, J. A.
  • Planta, Vol. 149, Issue 1
  • DOI: 10.1007/BF00386231

Springtime warming and reduced snow cover from carbonaceous particles
journal, January 2009

  • Flanner, M. G.; Zender, C. S.; Hess, P. G.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 7
  • DOI: 10.5194/acp-9-2481-2009

Toward an allocation scheme for global terrestrial carbon models
journal, October 1999


How positive is the feedback between climate change and the carbon cycle?
journal, April 2003


Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison
journal, July 2006

  • Friedlingstein, P.; Cox, P.; Betts, R.
  • Journal of Climate, Vol. 19, Issue 14
  • DOI: 10.1175/JCLI3800.1

The Gent–McWilliams parameterization: 20/20 hindsight
journal, January 2011


Isopycnal Mixing in Ocean Circulation Models
journal, January 1990


Constraining the Ratio of Global Warming to Cumulative CO 2 Emissions Using CMIP5 Simulations
journal, September 2013


The Tension between Fire Risk and Carbon Storage: Evaluating U.S. Carbon and Fire Management Strategies through Ecosystem Models
journal, January 2007

  • Girod, C. M.; Hurtt, G. C.; Frolking, S.
  • Earth Interactions, Vol. 11, Issue 2
  • DOI: 10.1175/EI188.1

Quantifying Carbon Cycle Feedbacks
journal, October 2009


Oceanic sources, sinks, and transport of atmospheric CO 2 : OCEANIC SOURCES, SINKS AND TRANSPORT OF CO
journal, February 2009

  • Gruber, Nicolas; Gloor, Manuel; Mikaloff Fletcher, Sara E.
  • Global Biogeochemical Cycles, Vol. 23, Issue 1
  • DOI: 10.1029/2008GB003349

Using the current seasonal cycle to constrain snow albedo feedback in future climate change
journal, January 2006


Quantification of global gross forest cover loss
journal, April 2010

  • Hansen, M. C.; Stehman, S. V.; Potapov, P. V.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 19
  • DOI: 10.1073/pnas.0912668107

Baseline Map of Carbon Emissions from Deforestation in Tropical Regions
journal, June 2012


Chapter G2 Carbon emissions from land use and land-cover change
journal, January 2012

  • Houghton, R. A.; van der Werf, G. R.; DeFries, R. S.
  • Biogeosciences Discussions, Vol. 9, Issue 1
  • DOI: 10.5194/bgd-9-835-2012

The Community Earth System Model: A Framework for Collaborative Research
journal, February 2013

  • Hurrell, James W.; Holland, M. M.; Gent, P. R.
  • Bulletin of the American Meteorological Society
  • DOI: 10.1175/BAMS-D-12-00121

Projecting the future of the U.S. carbon sink
journal, February 2002

  • Hurtt, G. C.; Pacala, S. W.; Moorcroft, P. R.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 3
  • DOI: 10.1073/pnas.012249999

The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections
journal, January 2013

  • Iversen, T.; Bentsen, M.; Bethke, I.
  • Geoscientific Model Development, Vol. 6, Issue 2
  • DOI: 10.5194/gmd-6-389-2013

The HadGEM2-ES implementation of CMIP5 centennial simulations
journal, January 2011

  • Jones, C. D.; Hughes, J. K.; Bellouin, N.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-543-2011

Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries
journal, July 2013

  • Keppel-Aleks, Gretchen; Randerson, James T.; Lindsay, Keith
  • Journal of Climate, Vol. 26, Issue 13, p. 4447-4475
  • DOI: 10.1175/JCLI-D-12-00589.1

Reconstruction of the history of anthropogenic CO2 concentrations in the ocean
journal, November 2009


Global ocean storage of anthropogenic carbon
journal, January 2013


Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

The global carbon budget 1959–2011
journal, January 2013


Roles of marginal seas in absorbing and storing fossil fuel CO2
journal, January 2011

  • Lee, Kitack; Sabine, Christopher L.; Tanhua, Toste
  • Energy & Environmental Science, Vol. 4, Issue 4
  • DOI: 10.1039/C0EE00663G

Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2
journal, December 2012

  • Lin, Pengfei; Yu, Yongqiang; Liu, Hailong
  • Advances in Atmospheric Sciences, Vol. 30, Issue 1
  • DOI: 10.1007/s00376-012-2042-7

Carbon allocation in forest ecosystems
journal, October 2007


The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2
journal, June 2012


Climate Trends and Global Crop Production Since 1980
journal, May 2011


ELEVATED CO 2 STIMULATES NET ACCUMULATIONS OF CARBON AND NITROGEN IN LAND ECOSYSTEMS: A META-ANALYSIS
journal, January 2006

  • Luo, Yiqi; Hui, Dafeng; Zhang, Deqiang
  • Ecology, Vol. 87, Issue 1
  • DOI: 10.1890/04-1724

A framework for benchmarking land models
journal, January 2012


Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network
journal, January 2006


Evaluation of ocean carbon cycle models with data-based metrics: METRICS OF OGCM SKILL
journal, April 2004

  • Matsumoto, K.; Sarmiento, J. L.; Key, R. M.
  • Geophysical Research Letters, Vol. 31, Issue 7
  • DOI: 10.1029/2003GL018970

The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
journal, August 2011


The next generation of scenarios for climate change research and assessment
journal, February 2010

  • Moss, Richard H.; Edmonds, Jae A.; Hibbard, Kathy A.
  • Nature, Vol. 463, Issue 7282
  • DOI: 10.1038/nature08823

Uptake mechanism of anthropogenic CO2 in the Kuroshio Extension region in an ocean general circulation model
journal, October 2011

  • Nakano, Hideyuki; Tsujino, Hiroyuki; Hirabara, Mikitoshi
  • Journal of Oceanography, Vol. 67, Issue 6
  • DOI: 10.1007/s10872-011-0075-7

Model-derived estimates of new production: New results point towards lower values
journal, January 2001


A Large and Persistent Carbon Sink in the World's Forests
journal, July 2011


The challenge to keep global warming below 2 °C
journal, December 2012

  • Peters, Glen P.; Andrew, Robbie M.; Boden, Tom
  • Nature Climate Change, Vol. 3, Issue 1
  • DOI: 10.1038/nclimate1783

Drought Sensitivity of the Amazon Rainforest
journal, March 2009


Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?
journal, April 2007


Global warming and tropical carbon
journal, February 2013


Carbon and the Anthropocene
journal, October 2010

  • Raupach, Michael R.; Canadell, Josep G.
  • Current Opinion in Environmental Sustainability, Vol. 2, Issue 4
  • DOI: 10.1016/j.cosust.2010.04.003

RCP 8.5—A scenario of comparatively high greenhouse gas emissions
journal, August 2011


Intercomparison of the Southern Ocean Circulations in IPCC Coupled Model Control Simulations
journal, September 2006

  • Russell, Joellen L.; Stouffer, Ronald J.; Dixon, Keith W.
  • Journal of Climate, Vol. 19, Issue 18
  • DOI: 10.1175/JCLI3869.1

The Oceanic Sink for Anthropogenic CO2
journal, July 2004


Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response: SOUTHERN OCEAN WATER MASSES IN CMIP5
journal, April 2013

  • Sallée, J. -B.; Shuckburgh, E.; Bruneau, N.
  • Journal of Geophysical Research: Oceans, Vol. 118, Issue 4
  • DOI: 10.1002/jgrc.20135

An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?
journal, December 1996

  • Thompson, Matthew V.; Randerson, James T.; Malmström, Carolyn M.
  • Global Biogeochemical Cycles, Vol. 10, Issue 4
  • DOI: 10.1029/96GB01667

Influence of carbon-nitrogen cycle coupling on land model response to CO 2 fertilization and climate variability : INFLUENCE OF CARBON-NITROGEN COUPLING
journal, December 2007

  • Thornton, Peter E.; Lamarque, Jean-François; Rosenbloom, Nan A.
  • Global Biogeochemical Cycles, Vol. 21, Issue 4
  • DOI: 10.1029/2006GB002868

Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM)
journal, January 2013

  • Tjiputra, J. F.; Roelandt, C.; Bentsen, M.
  • Geoscientific Model Development, Vol. 6, Issue 2
  • DOI: 10.5194/gmd-6-301-2013

Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
journal, January 2013

  • Todd-Brown, K. E. O.; Randerson, J. T.; Post, W. M.
  • Biogeosciences, Vol. 10, Issue 3
  • DOI: 10.5194/bg-10-1717-2013

The representative concentration pathways: an overview
journal, August 2011


Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations
journal, August 2010

  • Volodin, E. M.; Dianskii, N. A.; Gusev, A. V.
  • Izvestiya, Atmospheric and Oceanic Physics, Vol. 46, Issue 4
  • DOI: 10.1134/S000143381004002X

MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments
journal, January 2011

  • Watanabe, S.; Hajima, T.; Sudo, K.
  • Geoscientific Model Development, Vol. 4, Issue 4
  • DOI: 10.5194/gmd-4-845-2011

Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century: GLOBAL CARBON CYCLE FROM A CMIP5 MODEL
journal, May 2013

  • Wu, Tongwen; Li, Weiping; Ji, Jinjun
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50320

A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 ^|^mdash;Model Description and Basic Performance^|^mdash;
journal, January 2012

  • Yukimoto, Seiji; Adachi, Yukimasa; Hosaka, Masahiro
  • Journal of the Meteorological Society of Japan, Vol. 90A, Issue 0
  • DOI: 10.2151/jmsj.2012-A02

Terrestrial nitrogen feedbacks may accelerate future climate change: CARBON-NITROGEN FEEDBACKS AFFECT CLIMATE
journal, January 2010

  • Zaehle, Sönke; Friedlingstein, Pierre; Friend, Andrew D.
  • Geophysical Research Letters, Vol. 37, Issue 1
  • DOI: 10.1029/2009GL041345