skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volume-scalable high-brightness three-dimensional visible light source

Abstract

A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

Inventors:
; ; ;
Publication Date:
Research Org.:
SNL-A (Sandia National Laboratories, Albuquerque, NM (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1124650
Patent Number(s):
8,653,500
Application Number:
13/231,156
Assignee:
Sandia Corporation (Albuquerque, NM)
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Subramania, Ganapathi, Fischer, Arthur J, Wang, George T, and Li, Qiming. Volume-scalable high-brightness three-dimensional visible light source. United States: N. p., 2014. Web.
Subramania, Ganapathi, Fischer, Arthur J, Wang, George T, & Li, Qiming. Volume-scalable high-brightness three-dimensional visible light source. United States.
Subramania, Ganapathi, Fischer, Arthur J, Wang, George T, and Li, Qiming. Tue . "Volume-scalable high-brightness three-dimensional visible light source". United States. https://www.osti.gov/servlets/purl/1124650.
@article{osti_1124650,
title = {Volume-scalable high-brightness three-dimensional visible light source},
author = {Subramania, Ganapathi and Fischer, Arthur J and Wang, George T and Li, Qiming},
abstractNote = {A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2014},
month = {2}
}

Patent:

Save / Share:

Works referenced in this record:

Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity
journal, October 2008


Manipulation of luminescence from CdSe nanoparticles by three-dimensional photonic crystal
journal, May 2005

  • Chuang, C. M.; Lu, W. B.; Su, W. F.
  • Journal of Applied Physics, Vol. 97, Issue 9
  • DOI: 10.1063/1.1888042

Efficiency Improvement of GaN-Based LEDs With a $ \hbox{SiO}_{2}$ Nanorod Array and a Patterned Sapphire Substrate
journal, June 2010


Strong localization of photons in certain disordered dielectric superlattices
journal, June 1987


Enhancement of light extraction from GaN-based green light-emitting diodes using selective area photonic crystal
journal, June 2010

  • Kim, Ja-Yeon; Kwon, Min-Ki; Park, Seong-Ju
  • Applied Physics Letters, Vol. 96, Issue 25
  • DOI: 10.1063/1.3454240

Directional light extraction enhancement from GaN-based film-transferred photonic crystal light-emitting diodes
journal, March 2009

  • Lai, Chun-Feng; Chao, Chia-Hsin; Kuo, Hao-Chung
  • Applied Physics Letters, Vol. 94, Issue 12
  • DOI: 10.1063/1.3106109

GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission
journal, March 2009

  • Lee, Joonhee; Ahn, Sungmo; Kim, Sihan
  • Applied Physics Letters, Vol. 94, Issue 10
  • DOI: 10.1063/1.3095495

Dislocation density reduction in GaN by dislocation filtering through a self-assembled monolayer of silica microspheres
journal, June 2009

  • Li, Qiming; Figiel, Jeffrey J.; Wang, George T.
  • Applied Physics Letters, Vol. 94, Issue 23
  • DOI: 10.1063/1.3152012

Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals
journal, August 2004

  • Lodahl, Peter; Floris van Driel, A.; Nikolaev, Ivan S.
  • Nature, Vol. 430, Issue 7000
  • DOI: 10.1038/nature02772

Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes
journal, September 2008

  • McGroddy, K.; David, A.; Matioli, E.
  • Applied Physics Letters, Vol. 93, Issue 10
  • DOI: 10.1063/1.2978068

III-nitride photonic crystals
journal, August 2003

  • Oder, T. N.; Shakya, J.; Lin, J. Y.
  • Applied Physics Letters, Vol. 83, Issue 6
  • DOI: 10.1063/1.1600839

Enhanced Light Extraction by Photonic Quasi-Crystals in GaN Blue LEDs
journal, July 2009

  • Shields, P. A.; Charlton, M.; Lee, T.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, Issue 4
  • DOI: 10.1109/JSTQE.2009.2016674

Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography
journal, January 2009

  • Shir, D.; Nelson, E. C.; Chen, Y. C.
  • Applied Physics Letters, Vol. 94, Issue 1
  • DOI: 10.1063/1.3036955

Log-Pile TiO2 Photonic Crystal for Light Control at Near-UV and Visible Wavelengths
journal, January 2010

  • Subramania, Ganapathi; Lee, Yun-Ju; Fischer, Arthur J.
  • Advanced Materials, Vol. 22, Issue 4, p. 487-491
  • DOI: 10.1002/adma.200902264

Optical photonic crystals fabricated from colloidal systems
journal, June 1999

  • Subramania, G.; Constant, K.; Biswas, R.
  • Applied Physics Letters, Vol. 74, Issue 26
  • DOI: 10.1063/1.124228

Emission modification of CdSe quantum dots by titanium dioxide visible logpile photonic crystal
journal, October 2009

  • Subramania, G.; Lee, Y. -J.; Fischer, A. J.
  • Applied Physics Letters, Vol. 95, Issue 15
  • DOI: 10.1063/1.3245309

Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal
journal, January 2007

  • Subramania, Ganapathi; Lee, Yun-Ju; Brener, Igal
  • Optics Express, Vol. 15, Issue 20
  • DOI: 10.1364/OE.15.013049

Emission power of an electric dipole in the photonic band structure of the fcc lattice
journal, January 1995

  • Suzuki, Toshio; Yu, Paul K. L.
  • Journal of the Optical Society of America B, Vol. 12, Issue 4
  • DOI: 10.1364/JOSAB.12.000570

InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures
journal, May 2004

  • Wierer, J. J.; Krames, M. R.; Epler, J. E.
  • Applied Physics Letters, Vol. 84, Issue 19
  • DOI: 10.1063/1.1738934

Preparation of Photonic Crystals Made of Air Spheres in Titania
journal, August 1998


Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses
journal, February 2006

  • Wong, S.; Deubel, M.; Pérez-Willard, F.
  • Advanced Materials, Vol. 18, Issue 3, p. 265-269
  • DOI: 10.1002/adma.200501973

Inhibited Spontaneous Emission in Solid-State Physics and Electronics
journal, May 1987


Epitaxial growth of three-dimensionally architectured optoelectronic devices
journal, July 2011

  • Nelson, Erik C.; Dias, Neville L.; Bassett, Kevin P.
  • Nature Materials, Vol. 10, Issue 9
  • DOI: 10.1038/nmat3071