skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

Abstract

Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done by quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbonmore » gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.« less

Authors:
; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1124035
Report Number(s):
PNNL-SA-98884
KP1703020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biogeosciences, 11(5):1345-1360
Country of Publication:
United States
Language:
English
Subject:
climate modeling; carbon cycle; fire; disturbance

Citation Formats

Li, Fang, Bond-Lamberty, Benjamin, and Levis, Samuel. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. United States: N. p., 2014. Web. doi:10.5194/bg-11-1345-2014.
Li, Fang, Bond-Lamberty, Benjamin, & Levis, Samuel. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. United States. doi:10.5194/bg-11-1345-2014.
Li, Fang, Bond-Lamberty, Benjamin, and Levis, Samuel. 2014. "Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century". United States. doi:10.5194/bg-11-1345-2014.
@article{osti_1124035,
title = {Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century},
author = {Li, Fang and Bond-Lamberty, Benjamin and Levis, Samuel},
abstractNote = {Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done by quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbon gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.},
doi = {10.5194/bg-11-1345-2014},
journal = {Biogeosciences, 11(5):1345-1360},
number = ,
volume = ,
place = {United States},
year = 2014,
month = 3
}
  • Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment of fire’s influence on the global land air temperature during the 20th century through its impact on terrestrial ecosystems. We quantify the impact of fire by comparing 20th century fire-on and fire-off simulations with the Community Earth System Model (CESM) as the model platform. Here, results show that fire-induced changes in terrestrial ecosystems increased global land surface air temperature by 0.04 °C. Such changes significantly warmed the tropical savannas and southern Asia mainly by reducing latent heat flux, but cooledmore » Southeast China by enhancing the East Asian winter monsoon. 20% of the early 20th century global land warming can be attributed to fire-induced changes in terrestrial ecosystems, providing a new mechanism for explaining the poorly-understood climate change.« less
    Cited by 1
  • Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment of fire’s influence on the global land air temperature during the 20th century through its impact on terrestrial ecosystems. We quantify the impact of fire by comparing 20th century fire-on and fire-off simulations with the Community Earth System Model (CESM) as the model platform. Here, results show that fire-induced changes in terrestrial ecosystems increased global land surface air temperature by 0.04 °C. Such changes significantly warmed the tropical savannas and southern Asia mainly by reducing latent heat flux, but cooledmore » Southeast China by enhancing the East Asian winter monsoon. 20% of the early 20th century global land warming can be attributed to fire-induced changes in terrestrial ecosystems, providing a new mechanism for explaining the poorly-understood climate change.« less
  • Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment and understanding of fire’s influence on the global annual land surface air temperature and energy budget through its impact on terrestrial ecosystems. Fire impacts are quantified by comparing fire-on and fire-off simulations with the Community Earth System Model (CESM). Results show that, for the 20th century average, fire-induced changes in terrestrial ecosystems significantly increase global land annual mean surface air temperature by 0.18 °C, decrease surface net radiation and latent heat flux by 1.08 W m -2 and 0.99 Wmore » m -2, respectively, and have limited influence on sensible heat flux ( 0.11 W m -2) and ground heat flux (þ0.02 W m -2). Fire impacts are most clearly seen in the tropical savannas. Our analyses suggest that fire increases surface air temperature predominantly by reducing latent heat flux, mainly due to fire-induced damage to the vegetation canopy, and decreases net radiation primarily because fire-induced surface warming significantly increases upward surface longwave radiation. This study provides an integrated estimate of fire and induced changes in ecosystems, climate, and energy budget at a global scale, and emphasizes the importance of a consistent and integrated understanding of fire effects.« less
    Cited by 1
  • Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a centurymore » average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since ~ 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.« less
  • The Terrestrial Ecosystem Model (TEM version 4) was applied to simulate primary production and total carbon storage for two atmospheric CO{sub 2} concentrations (315ppm and 630ppm) and three climate scenarios (contemporary, 2-dimensional MIT L-O climate model and 3-dimensional GISS). For contemporary climate (Cramer & Leemans dataset) at 315ppm CO{sub 2}, global annual NPP was 47.9 Pg C.yr{sup {minus}1} and total carbon storage was 1658.2 Pg C. Under atmospheric CO{sub 2} concentration of 630ppm and projected double CO{sub 2} climate by the MIT L-O climate model, global annual NPP increased by 12%, and total carbon storage increased by 11%. Global annualmore » NPP and total carbon storage under the GISS were about 1% to 2% higher than those under the MIT L-O model. The difference in annual NPP and total carbon storage between the GISS and MIT L-O models varied among the 18 biomes, in the range of 0% to 20%. The differences were greatest in the high latitude ecosystems.« less