skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties.

Technical Report ·
DOI:https://doi.org/10.2172/1115318· OSTI ID:1115318
 [1];  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)

Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.

Research Organization:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1115318
Report Number(s):
SAND2013-8540; 481854
Country of Publication:
United States
Language:
English

Similar Records

Related Subjects