skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics-based signal processing algorithms for micromachined cantilever arrays

Abstract

A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

Inventors:
; ; ; ; ;
Publication Date:
Research Org.:
LLNL (Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1108966
Patent Number(s):
8,584,506
Application Number:
11/435,495
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA) LLNL
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Candy, James V, Clague, David S, Lee, Christopher L, Rudd, Robert E, Burnham, Alan K, and Tringe, Joseph W. Physics-based signal processing algorithms for micromachined cantilever arrays. United States: N. p., 2013. Web.
Candy, James V, Clague, David S, Lee, Christopher L, Rudd, Robert E, Burnham, Alan K, & Tringe, Joseph W. Physics-based signal processing algorithms for micromachined cantilever arrays. United States.
Candy, James V, Clague, David S, Lee, Christopher L, Rudd, Robert E, Burnham, Alan K, and Tringe, Joseph W. Tue . "Physics-based signal processing algorithms for micromachined cantilever arrays". United States. doi:. https://www.osti.gov/servlets/purl/1108966.
@article{osti_1108966,
title = {Physics-based signal processing algorithms for micromachined cantilever arrays},
author = {Candy, James V and Clague, David S and Lee, Christopher L and Rudd, Robert E and Burnham, Alan K and Tringe, Joseph W},
abstractNote = {A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 19 00:00:00 EST 2013},
month = {Tue Nov 19 00:00:00 EST 2013}
}

Patent:

Save / Share: