skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

Journal Article · · Journal of Nuclear Materials

Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Shared Research Equipment Collaborative Research Center
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1104790
Journal Information:
Journal of Nuclear Materials, Vol. 444, Issue 1-3; ISSN 0022-3115
Country of Publication:
United States
Language:
English

Similar Records

Creep-Fatigue Behavior of Alloy 617 at 850°C
Technical Report · Fri May 01 00:00:00 EDT 2015 · OSTI ID:1104790

Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617
Technical Report · Sun Apr 30 00:00:00 EDT 2017 · OSTI ID:1104790

Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C
Journal Article · Tue Jan 01 00:00:00 EST 2013 · Materials Science and Engineering A · OSTI ID:1104790

Related Subjects