skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

Abstract

The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

Authors:
 [1]
  1. Stanford Univ., CA (United States). Edward L. Ginzton Lab.
Publication Date:
Research Org.:
Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1104550
Report Number(s):
DOE-STAN-DE41276-33
DOE Contract Number:
FG02-03ER41276
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; laser-driven; dielectric waveguide; electron accelerators

Citation Formats

Byer, Robert L. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures. United States: N. p., 2013. Web. doi:10.2172/1104550.
Byer, Robert L. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures. United States. doi:10.2172/1104550.
Byer, Robert L. Thu . "Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures". United States. doi:10.2172/1104550. https://www.osti.gov/servlets/purl/1104550.
@article{osti_1104550,
title = {Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures},
author = {Byer, Robert L.},
abstractNote = {The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.},
doi = {10.2172/1104550},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Nov 07 00:00:00 EST 2013},
month = {Thu Nov 07 00:00:00 EST 2013}
}

Technical Report:

Save / Share:
  • The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. Thismore » is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in a future high energy, high gradient accelerator facility. We predict that the T of a high gradient CDWA can be increased by a substantial factor; this enhancement is dramatically greater than what has been demonstrated heretofore. This large enhancement in T that we predict arises from using a train of three or four drive bunches in which the spacing of the bunches and their respective charges are selected according to a simple principle that requires each bunch lose energy to the wakefields at the same rate, so as not to sacrifice drive beam efficiency as would be the case if one bunch exhausted its available energy while others had not. It is anticipated that results from the study proposed here can have a direct impact on design of the dielectric accelerator in a TeV-scale collider concept, and in the accelerator for an x-ray FEL.« less
  • We report the first high gradient studies of a millimeter-wave accelerator, employing for the first time a planar dielectric accelerator, powered by means of a 0.5-A, 300-MeV, 11.424-GHz drive electron beam, synchronous at the 8-th harmonic, 91.392 GHz. Embedded in a ring-resonator circuit within the electron beamline vacuum, this structure was operated at 20 MeV/m, with a circulating power of 200 kW, for 2 x 10{sup 5} pulses, with no sign of breakdown, dielectric charging or other deleterious high-gradient phenomena. We also present the first measurement of the quadrupolar content of an accelerating mode.
  • Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and themore » resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M{Omega}/m for DLA, as compared to 99 M{Omega}/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.« less