skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efforts to Consolidate Chalcogels with Adsorbed Iodine

Abstract

This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in amore » single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent melt attack.« less

Authors:
; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1097940
Report Number(s):
PNNL-22678
AF5805000
DOE Contract Number:
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
chalcogel; consolidation; tin-sulfide; aerogel

Citation Formats

Riley, Brian J., Pierce, David A., and Chun, Jaehun. Efforts to Consolidate Chalcogels with Adsorbed Iodine. United States: N. p., 2013. Web. doi:10.2172/1097940.
Riley, Brian J., Pierce, David A., & Chun, Jaehun. Efforts to Consolidate Chalcogels with Adsorbed Iodine. United States. doi:10.2172/1097940.
Riley, Brian J., Pierce, David A., and Chun, Jaehun. Wed . "Efforts to Consolidate Chalcogels with Adsorbed Iodine". United States. doi:10.2172/1097940. https://www.osti.gov/servlets/purl/1097940.
@article{osti_1097940,
title = {Efforts to Consolidate Chalcogels with Adsorbed Iodine},
author = {Riley, Brian J. and Pierce, David A. and Chun, Jaehun},
abstractNote = {This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent melt attack.},
doi = {10.2172/1097940},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Aug 28 00:00:00 EDT 2013},
month = {Wed Aug 28 00:00:00 EDT 2013}
}

Technical Report:

Save / Share:
  • The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into amore » final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.« less
  • Tin sulfide (Sn2S3) chalcogels are one of the most effective non-oxide aerogels evaluated to date for iodine gas capture. This is attributed to the fact that the Sn within the gel network has a strong affinity for chemisorption of iodine to form SnI4. This study demonstrates an approach for consolidating the raw and iodine-sorbed Sn2S3 chalcogels into a chalcogenide glass using GeS2 as a glass forming additive. The system with both iodine-sorbed and iodine-free Sn2S3 chalcogels provides better glass-forming characteristics than Sn-S or Sn-S-I alone, and the quantity of iodine measured in the bulk glass of the consolidated iodine-sorbed Sn2S3more » chalcogel was at ~45 mass%. Additional experiments were also conducted using microwave sintering and hot isostatic pressing with Sn2S3 xerogels.« less
  • This report provides an up-to-date account of the non-Pt based chemistries available in the literature for making non-oxide, chalcogen-based aerogels, called chalcogels. In each case, a combination of multiple precursors is required to make the chalcogels and, in most cases, the precursors are not commercially available and must be prepared in the laboratory. References for the preparation details of these precursors have been provided for each. An account of the chalcogels made at PNNL is also given in this report along with iodine sorption efficiencies for three very diverse chalcogel chemistries. A brief account of consolidation options is provided.
  • This report provides some preliminary data for the consolidation of chalcogen-based aerogels. The chalcogels tested to date at PNNL show great promise as iodine sorbents and preliminary consolidation research shows that they can be melted into a phase-pure glass at moderate temperatures. The preliminary consolidation experiments show that these materials might attack fused quartz so an alternative crucible material will likely need to be used to prevent this. The next steps will be to • Consider melting other chalcogel chemistries, e.g., Sn-Sb-S, Ge-Sn-S chalcogels • Consider melting chalcogels with adsorbed iodine to monitor iodine loss during melting • Optimize themore » consolidation temperatures to minimize the iodine loss and volatilization« less