skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls

Abstract

Lithium wall conditioning has lowered hydrogenic recycling and dramatically improved plasma performance in many magnetic-fusion devices. In this Letter, we report quantum-classical atomistic simulations and laboratory experiments that elucidate the roles of lithium and oxygen in the uptake of hydrogen in amorphous carbon. Surprisingly, we show that lithium creates a high oxygen concentration on a carbon surface when bombarded by deuterium. Furthermore, surface oxygen, rather than lithium, plays the key role in trapping hydrogen.

Authors:
 [1];  [2];  [2];  [3];  [4];  [4];  [5];  [6];  [7];  [8]
  1. University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)
  2. Purdue University
  3. UTK/Univ. California, Los Angeles
  4. Kyoto University, Fukui Institute for Fundamental Chemistry, Japan
  5. National Inst. Computational Sciences, UTK
  6. PIM/CNRS/Aix-Marseille University, Marseille, France
  7. ORNL
  8. Princeton Plasma Physics Laboratory (PPPL)
Publication Date:
Research Org.:
Oak Ridge National Laboratory, Oak Ridge Leadership Computing Facility (OLCF); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1095768
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 110; Journal Issue: 10; Journal ID: ISSN 0031-9007
Country of Publication:
United States
Language:
English

Citation Formats

Krstic, Predrag S., Allain, J. P., Taylor, C. N., Dadras, J., Maeda, S., Morokuma, K., Jakowski, J., Allouche, A., Baylor, Larry R, and Skinner, C. H. Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls. United States: N. p., 2013. Web. doi:10.1103/PhysRevLett.110.105001.
Krstic, Predrag S., Allain, J. P., Taylor, C. N., Dadras, J., Maeda, S., Morokuma, K., Jakowski, J., Allouche, A., Baylor, Larry R, & Skinner, C. H. Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls. United States. doi:10.1103/PhysRevLett.110.105001.
Krstic, Predrag S., Allain, J. P., Taylor, C. N., Dadras, J., Maeda, S., Morokuma, K., Jakowski, J., Allouche, A., Baylor, Larry R, and Skinner, C. H. Tue . "Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls". United States. doi:10.1103/PhysRevLett.110.105001.
@article{osti_1095768,
title = {Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls},
author = {Krstic, Predrag S. and Allain, J. P. and Taylor, C. N. and Dadras, J. and Maeda, S. and Morokuma, K. and Jakowski, J. and Allouche, A. and Baylor, Larry R and Skinner, C. H.},
abstractNote = {Lithium wall conditioning has lowered hydrogenic recycling and dramatically improved plasma performance in many magnetic-fusion devices. In this Letter, we report quantum-classical atomistic simulations and laboratory experiments that elucidate the roles of lithium and oxygen in the uptake of hydrogen in amorphous carbon. Surprisingly, we show that lithium creates a high oxygen concentration on a carbon surface when bombarded by deuterium. Furthermore, surface oxygen, rather than lithium, plays the key role in trapping hydrogen.},
doi = {10.1103/PhysRevLett.110.105001},
journal = {Physical Review Letters},
issn = {0031-9007},
number = 10,
volume = 110,
place = {United States},
year = {2013},
month = {1}
}

Works referenced in this record:

Plasma-material interactions in current tokamaks and their implications for next step fusion reactors
journal, December 2001


Conference Report on the 2nd International Symposium on Lithium Applications for Fusion Devices
journal, February 2012


Thick boron carbide coatings for protection of tokamak first wall and divertor
journal, August 1999


Recombination of deuterium atoms on the surface of molten Li–LiD
journal, November 2002


Deuterium retention in liquid lithium
journal, October 2002


The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment
journal, May 2008

  • Kugel, H. W.; Bell, M. G.; Ahn, J. -W.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2906260

Laboratory experiment on lithium chemistry and its application to effective wall conditioning
journal, March 1999


Enhanced performance of deuterium–tritium‐fueled supershots using extensive lithium conditioning in the Tokamak Fusion Test Reactor
journal, November 1995

  • Mansfield, D. K.; Strachan, J. D.; Bell, M. G.
  • Physics of Plasmas, Vol. 2, Issue 11
  • DOI: 10.1063/1.871050

Continuous Improvement of H-Mode Discharge Performance with Progressively Increasing Lithium Coatings in the National Spherical Torus Experiment
journal, September 2011


Measurements and modelling of solid phase lithium sputtering
journal, February 2002


Alkali metal adsorption on graphite: a review
journal, August 2005


Rapid diffusion of lithium into bulk graphite in lithium conditioning
journal, March 2001


Chemical response of lithiated graphite with deuterium irradiation
journal, March 2011

  • Taylor, C. N.; Heim, B.; Allain, J. P.
  • Journal of Applied Physics, Vol. 109, Issue 5
  • DOI: 10.1063/1.3555097

Electronic structure of lithium graphite
journal, March 1980


Measurement of lithium and deuterium on NSTX carbon tiles
journal, June 2009


Surface chemistry and physics of deuterium retention in lithiated graphite
journal, August 2011


Lithium Insertion in Hydrogen-Containing Carbonaceous Materials
journal, January 1996

  • Zheng, Tao; Xue, J. S.; Dahn, J. R.
  • Chemistry of Materials, Vol. 8, Issue 2
  • DOI: 10.1021/cm950304y

New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation
journal, April 2004


Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
journal, January 2009


Reactivity of lithium exposed graphite surface
journal, July 2009


Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface
journal, May 2012

  • Allain, Jean Paul; Taylor, Chase N.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4719688

Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications
journal, June 2009


Excited state quantum-classical molecular dynamics
journal, April 2006


Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Implementation and benchmark tests of the DFTB method and its application in the ONIOM method
journal, January 2009

  • Zheng, Guishan; Lundberg, Marcus; Jakowski, Jacek
  • International Journal of Quantum Chemistry, Vol. 109, Issue 9
  • DOI: 10.1002/qua.22002

Dynamics of deuterium retention and sputtering of Li–C–O surfaces
journal, October 2012


Atomic hydrogen adsorption on lithium-doped graphite surfaces
journal, February 2012


The effect of surface oxidation on atomic hydrogen adsorption on lithium-doped graphite surfaces
journal, August 2012


Dramatic reduction of chemical sputtering of graphite under intercalation of lithium
journal, March 2003


Chemical and physical erosion of carbon and metallic substrates containing lithium during low-energy deuterium ion irradiation
journal, August 2011


Ion-Induced Surface Modification of Alloys
journal, January 1983